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Time-asymptotic wave propagation in collisionless plasmas
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We report the results of a new, systematic study of nonlinear longitudinal wave propagation in a collisionless
plasma. Based on the decomposition of the electric fieldE into a transient partT and a time-asymptotic partA,
we show thatA is given by a finite superposition of wave modes, whose frequencies obey a Vlasov dispersion
relation, and whose amplitudes satisfy a set of nonlinear algebraic equations. These time-asymptotic mode
amplitudes are calculated explicitly, based on approximate solutions for the particle distribution functions
obtained by linearizing only the term that containsT in the Vlasov equation for each particle species, and then
integrating the resulting equation along the nonlinear characteristics associated withA, which are obtained via
Hamiltonian perturbation theory. For ‘‘linearly stable’’ initial Vlasov equilibria, we obtain acritical initial
amplitude~or threshold!, separating the initial conditions that produce Landau damping to zero (A[0) from
those that lead to nonzero multiple-traveling-wave time-asymptotic states via nonlinear particle trapping
(AÓ0). These theoretical results have important implications about the stability of spatially uniform plasma
equilibria, and they also explain why large-scale numerical simulations in some cases lead to zero-field final
states whereas in others they yield nonzero multiple-traveling-wave final states.

DOI: 10.1103/PhysRevE.68.026406 PACS number~s!: 52.35.Fp, 52.35.Mw
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I. INTRODUCTION

One of the oldest and most fundamental problems
plasma kinetic theory is that of small-amplitude longitudin
wave propagation in a collisionless plasma described by
Vlasov-Poisson~VP! equations

] f a

]t
1v

] f a

]x
1

qa

ma
E

] f a

]v
50, ~1a!

]E

]x
54p(

a
qaE dv f a , ~1b!

where f a(x,v,t) is the distribution function for particle spe
ciesa, a51,...,NS , andE is the self-consistent longitudina
electric field. This well-known model has played a major ro
in the analysis of plasma instabilities and wave propaga
in a wide variety of settings, ranging from astrophysic
solar, and magnetospheric plasmas to laboratory and fu
plasmas. However, due to the extreme analytical difficul
associated with the nonlinear Vlasov equation, much of
classic theory of plasma waves@1–4# has been based on th
analysis of the linearized VP system. The most famous re
of the linear theory is Landau damping: according to Lan
au’s solution of the initial value problem, every small pertu
bation of a Maxwellian electron plasma with a fixed io
background decays exponentially because of collision
absorption of electric field energy by the resonant partic
i.e., the particles traveling at velocities close to the ph
velocity of a wave mode. In the early 1960s, Landau’s res
was generalized by others@5–7# who proved that the solu
tions to the linearized VP system exhibit Landau damp
whenever the equilibrium distribution is single humped, i.
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n
l
e

n
,
on
s
e

lt
-
-

ss
s,
e
lt

g
,

when it has only one maximum, as indeed is the case for
Maxwellian. Accordingly, the equilibria in this class are o
ten called ‘‘linearly stable.’’

An unfortunate fact is that the linearization of the V
system is, in general, not uniformly valid in time@7# even for
small initial perturbations. Thus, the validity of most of th
linear results is limited to a relatively short time scale. This
the case, in particular, for Landau damping; as early as 1
O’Neil @8# argued that nonlinear effects can prevent the co
plete damping of a sinusoidal wave and lead to a fix
amplitude time-asymptotic traveling-wave mode, sustain
by the oscillations of the particles trapped in the wave’s p
tential well very much like the well-known Bernstein
Greene-Kruskal~BGK! @9# nonlinear traveling-wave solu
tions. The time scale on which these nonlinear effe
become important can be estimated as the time scale
which a particle crosses the potential well and reaches a t
ing point. Close to the bottom of the well, the field is we
approximated by the harmonic fieldE(x,t)52(eke/m)x
~for a plasma of electrons with chargee and massm!, so that
the ‘‘trapping’’ ~or ‘‘bounce’’! time is tb5Am/eke. On the
other hand, Landau damping takes place on a different t
scale, which can be estimated astL51/gL where gL is a
typical Landau damping coefficient. O’Neil@8# observed that
there are two limiting cases.

~1! If tL!tb , the field is damped before nonlinear effec
become relevant. The wave dies away before it can sign
cantly distort the single-particle trajectories~and the
background equilibrium!, and the linear theory is basicall
accurate.

~2! If tL@tb , the reverse is true: the wave is not damp
before nonlinear effects become important; rather, these
fects appear quickly and modify the distribution function
the resonant region, invalidating the linear theory. This s
©2003 The American Physical Society06-1



a
h

le
nc
e
pe
e
m

he
p
s
a

e

li
on
pa
m
nt
ri

p
he
us
.
w

o
a
s
se
r-
th
s

ap
.

s-
p

he
lu
i-
je

t
m

f
e

s

e-
ca-
s

e

of
per-
m a
ns

the
of

e
still
e
nd
e
is

the
the

e to

ld
old

ter-

of
-
al

ar
ion
he
de-
r-

dic
n-
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ond case was the object of O’Neil’s study; since Land
damping has very little time to affect the wave amplitude,
argued that, to first order intb /tL , the constant-amplitude
field E(x,t)5sin(kx2vt) can be used to compute the partic
trajectories. This can be done in terms of Jacobi elliptic fu
tions and leads to a wave amplitude that is initially damp
according to Landau, but later grows back as the trap
particles start transferring energy back to the wave. Th
damping and growing alternate until the field settles to so
finite amplitude smaller~in the case of initial damping! than
its initial value but different from zero. The decrease of t
amplitude oscillations occurs because, as the trapped
ticles oscillate on orbits of different frequencies, they lo
phase coherence until there is no net density flux in ph
space across the wave phase velocity.

The limitation of O’Neil’s analysis, of course, is that th
particle trajectories are calculated by assigninga priori the
electric field to be a single sinusoidal wave of fixed amp
tude. However, in many practical cases amplitude variati
and the presence of multiple wave modes do affect the
ticle trajectories significantly. To account for changing a
plitudes, others@10–13# have carried out semi-self-consiste
computations, which apply O’Neil’s general method to va
ous more sophisticatedAnsätze for the field. This latter is
assumed, again, to be a monochromatic wave, but the am
tude is allowed a slow variation; the crucial point is then t
solution of the resulting Newton equations via vario
asymptotic methods~averaging, adiabatic invariants, etc!.
These studies essentially confirm O’Neil’s basic result; ho
ever, their value is also limited by the restrictiveAnsatzon
the field, which prevents a fully self-consistent treatment
the VP initial value problem. In fact, no progress at all h
been made toward a satisfactory self-consistent analysi
the nonlinear VP initial value problem in the general ca
which includestb and tL being of the same order. In pa
ticular, nothing is known about the transition between
initial conditions that lead to a zero electric field and tho
that lead to nonzero time-asymptotic fields via particle tr
ping. Results for this transition are included in this paper

Recently, rigorous nonlinear analyses@14–16# based on
BGK representations@9# have shown that collisionless pla
mas can sustain small-amplitude waves near single-hum
equilibria, in spite of the predictions of the linear theory. T
question is whether, and how, periodic traveling-wave so
tions of this kind@14,15# can be generated from various in
tial conditions. Recently, this question has been the sub
of much work, both analytical@17–21# and numerical@22–
24#, and also of some controversy@25#. In order to clarify
some of the outstanding issues, in this paper we report
results of a detailed analysis, some of which were sum
rized earlier in a brief communication@18#.

Our analysis is based on four key steps.~a! The decom-
position of the electric fieldE into a transient partT and a
time-asymptotic partA such thatE(x,t)5A(x,t)1T(x,t).
This representation makes it possible to decompose the
nonlinear VP problem itself into a transient part and a tim
asymptotic part~Sec. II A!. ~b! The linearization of the Vla-
sov equation with respect only toT(x,t) but notA(x,t), i.e.,
02640
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]Fa

]v
, ~2!

whereFa(x,v) is the initial distribution function~Sec. II B!.
~c! The formal solution of Eq.~2! in terms of the nonlinear
characteristics corresponding toA ~Sec. II C!. ~d! The utili-
zation of the solution of Eq.~2! to obtain algebraic equation
for the mode amplitudes ofA(x,t) ~Secs. II D and II E!. Step
~d! is somewhat laborious: it involves focusing on the tim
asymptotic part of the problem and studying it as a bifur
tion problem for small-amplitude multiple-wave solution
near the basic solutionA[0 which corresponds to complet
Landau damping. We find that, if any nonzero solution forA
‘‘bifurcates’’ from A[0 ~for a ‘‘critical’’ initial condition !,
then it is given, at leading order, by a finite superposition
wave modes whose phase velocities satisfy a Vlasov dis
sion relation and whose amplitudes can be obtained fro
finite dimensional system of nonlinear algebraic equatio
that depend onT and Fa . It is crucial that the nonlinear
characteristics for a fieldA(x,t) of this kind can be deter-
mined explicitly via Hamiltonian perturbation theory@15#.
The explicit calculation of these characteristics, and thus
development of the equations for the mode amplitudes
A(x,t) is carried out in Sec. III, in the case of a two-wav
final state. Because the coefficients in these equations
depend onT and Fa , in Sec. IV we have to complete th
analysis by turning to the transient part of the problem a
introducing a standard perturbation technique to determinT
near a bifurcation point of the time-asymptotic problem. Th
approach to the determination ofT exploits the fact that its
decay properties neutralize most of the secularities that in
past have plagued attempts at perturbative solutions for
complete fieldE.

In this way, we obtain two main results:~a! the threshold
~or ‘‘critical initial amplitude’’! below which initial field am-
plitudes are damped to zero and above which they evolv
nonzero time-asymptotic solutions; and~b! the dependence
of the time-asymptotic field amplitude upon the initial fie
amplitude when the latter is above, but close to, the thresh
value. In particular, we analyze a case of very general in
est, a sinusoidal initial perturbation@8,10,11,13,26,27# and
obtain a complete picture of the time-asymptotic evolution
this type initial condition for various initial distribution func
tions. Interestingly, our analytical calculation of the critic
initial amplitude ~as briefly summarized in@18#! has been
confirmed by recent numerical simulations@24#.

II. TIME-ASYMPTOTIC ANALYSIS

In order to obtain the long-time solution to the nonline
VP equations, in this section we develop an approximat
scheme that yields the long-time electric field formally, in t
sense that the time-asymptotic solution depends on the
tails of the transient evolution of the field, which is dete
mined later~in Sec. IV!.

A. A-T decomposition

As already discussed, a linearly stable spatially perio
initial disturbance in a collisionless plasma will either u
6-2
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TIME-ASYMPTOTIC WAVE PROPAGATION IN . . . PHYSICAL REVIEW E68, 026406 ~2003!
dergo Landau damping to zero, before the trapping effe
become important, or evolve to a nonzero time-asympt
state. In the second scenario, particle trapping will crea
flat spot on the distribution function at the phase velocity
each wave mode that is not Landau damped. This imp
that, in the time-asymptotic limit, these modes will becom
unable to exchange energy with the resonant particles,
will essentially travel with constant amplitude; thus, the ele
tric field will tend asymptotically to a nonlinear superpos
tion of traveling waves very much like the multiple ‘‘BGK
like’’ modes recently described by Buchanan and Dorn
@15#. This suggests that we look for solutions in which t
electric field E(x,t) is an asymptotically almost periodic
~AAP! function of t @28#. For such solutions, we can writ
E(x,t) as the sum of atransient partand atime-asymptotic
part

E~x,t !5T~x,t !1A~x,t !, ~3!

where bothT(x,t) and A(x,t) are spatially periodic and
limt→`T(x,t)50; and A(x,t) is an almost periodic@29#
function of t, i.e., a general superposition of modes of t
form A(x,t)5(k,v i

ak,v i
eikx2 iv i t, where the frequenciesv i

can take a countable set of real values, unlike the wave n
bersk, which are restricted to integer values by the requi
ment of exact~spatial! periodicity. The amplitudesak,v i

are

the Fourier-Bohr coefficientsof A(x,t), given by

ak,v i
5 lim

s→`

1

s E
0

s

dt
1

2p E
2p

1p

dx e2 ikx1 iv i tE~x,t !, ~4!

which combines a standard Fourier transform in space wi
Bohr transform in time, in which the averaging operato
lims→`(1/s)*0

sdt replaces the usual Fourier integral*2`
1`dt.

This integral transform filters out the transient phenome
and retains only the time-asymptotic behavior; thus,
Fourier-Bohr series of an AAP function is a ‘‘projector’’Pa
that separates its transient and time-asymptotic parts. W
E is of the form in Eq.~3!, clearly PaE5A and (I 2Pa)E
5T. Thus, applyingPa and (I 2Pa) to Eq. ~1b! yields a set
of coupled equations forA andT:

]A

]x
54pPa(

a
qaE dv f a~A1T!, ~5a!

]T

]x
54p~ I 2Pa!(

a
qaE dv f a~A1T!. ~5b!

From the definition ofT(x,t), a solution to Eqs.~5! must
satisfy the additional condition limt→`T(x,t)50. Equation
5~a! will be called thetime-asymptotic equation, while Eq.
5~b! will be the transient equation. The notationf a(A1T)
here emphasizes that thef a depend nonlinearly onA andT
via the Vlasov equation.

B. Transient linearization

The A-T decomposition makes it possible to obtain
approximate solution forf a(A1T) via transient lineariza-
tion, i.e., the linearization of the Vlasov equation only wi
02640
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respect toT, keeping the nonlinearity in the term that co
tains A. As long asT decays fast enough~before the distri-
bution function deviates substantially from the initial cond
tion!, we can expect the transiently linearized approximat
to the Vlasov equation to be uniformly valid in time, unlik
the standard linearized problem. Moreover, if the charac
istics associated withA can be computed, the transiently lin
earized Vlasov equation can be solved analytically. Writi
Eq. ~1a! in terms of A1T and introducing the ‘‘lineariza-
tion’’ of T] f a /]v about the initial distribution yields

] f a

]t
1v

] f a

]x
1

qa

ma
A

] f a

]v
52

qa

ma
T

]Fa

]v
, ~6!

where Fa(x,v)[ f a(x,v,0)5Fa(v)1ha(x,v). Here, the
initial condition Fa has been written as the sum of its sp
tially uniform part Fa ~which will be taken to be a Vlasov
equilibrium! and a perturbationha which will play the role
of a running parameter in our analysis.

In the standard linear Vlasov equation the complete fi
E interacts at all times with the fixed background distributi
Fa . That approximation is not uniformly valid in the
asymptotic time limit, since the nonlinear distributionf a be-
comes qualitatively different fromFa . Conversely, the lin-
earization in Eq.~6! involves only the transient; hence,
does not requireFa to be a uniformly good approximation t
f a as t→`, as long asT→0 ‘‘fast enough’’ in that limit. In
fact, the full nonlinear interaction between the asympto
field A and the distribution function is maintained throug
the termA] f a /]v. Clearly, Eq.~6! can be solved exactly
whenever the characteristics@xt

A(x,v,t),vt
A(x,v,t)# can be

determined and leads to the number density in Eq.~7!. Inter-
estingly, Eq. ~6! includes as special cases both O’Nei
strong-trapping scenario@8# and linear Landau damping@2#.
In the first case, under O’Neil’s assumption that the transi
part of the field has negligible effects on particle trajectori
T50 and Eq.~6! reduces to the nonlinear Vlasov equatio
with E5A, which O’Neil solved analytically for a single
mode sinusoidal wave. This case also includes all the e
BGK @9,14,16# and BGK-like@15# solutions. At the opposite
extreme, whenever the electric field is damped to zero be
nonlinear effects become relevant,A50 and Eq.~6! be-
comes a linearized Vlasov equation withE5T, leading to
Landau’s exponentially damped solution for the electric fie
@which he obtained under the even stronger assumption
f a(x,v,0) could be approximated byFa(v) @2##.

Whereas the traditional linearization relies on the
sumed small amplitude of the electric field, the transient l
earization introduced here is based on an assumption a
the decay rate ofT, not about its amplitude. Specifically,
requires thatt trans!tdyn, wheret trans is the time scale over
which T becomes negligibly small, andtdyn is the time it
takes the nonlinear dynamics to make the distribution fu
tion f a significantly different from the initial distribution
Fa . These time scales are defined more precisely in App
dix A, where a detailed discussion of the error involved
the transient linearization is presented. It is interesting
compare the conditiont trans!tdyn, which involves the decay
rate ofT only, with O’Neil’s conditiontL!tb for the valid-
6-3
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C. LANCELLOTTI AND J. J. DORNING PHYSICAL REVIEW E68, 026406 ~2003!
ity of the standard linear theory. Whereas O’Neil conside
the damping rate of the whole fieldE, here the asymptotic
partA has been subtracted. Hence, this condition can be
isfied even when the complete fieldE does not damp at all
e.g., for a BGK traveling mode of the Holloway-Dornin
type @14#, whereT50 and thereforet trans50. In this case
t trans!tdyn is trivially satisfied, whereastL5`@tb , i.e., it
is a trapping-dominated situation that is completely outs
the domain of validity of the linear theory.

C. Critical initial conditions

Equation ~6! can be solved formally in terms of theA
characteristics@xt

A(x,v,t),vt
A(x,v,t)#, which associate with

every phase point (x,v) at timet a ‘‘starting point’’ @xt
A ,vt

A#
at t<t along the trajectory determined byA. Integrating inv
then gives

E
R
dv f a~x,v,t !5E

R
dv Fa~x0

A ,v0
A!

2
qa

ma
E

R
dvE

0

t

dtH T
]Fa

]v J
@x

t
A ,vt

A#

~7!

for the number densities, which will be the foundation f
our analysis of the nonlinear VP initial value problem. Su
stituting Eq.~7! into Eq.~5a! and Fourier transforming give
~for kÞ0)

Ak~ t !5
2

ik (
a

qaPaE
2p

1p

dx e2 ikx

3E
R
dvFa„x0

A~x,v,t !,v0
A~x,v,t !…

2
2

ik (
a

qa
2

ma
PaE

2p

1p

dx e2 ikx

3E
R
dvE

0

t

dtH T
]Fa

]v J
@x

t
A~x,v,t !,vt

A~x,v,t !#

~8!

~where here and below the6p in the limits of integration
have units of length, i.e., the wavelength is taken as uni!.
This equation contains the characteristics for the fieldA,
which, of course, is still unknown. Our strategy is to sho
that,at the transition between the initial conditions that lea
to complete Landau damping(A[0) and those that lead to
nonzero small-amplitude solutions for A, the general solut
for A can be determined a priori. Such a general solution
will depend on a finite set of unknown amplitudes that w
satisfy certain nonlinear algebraic equations derived fr
Eq. ~8!.

A preliminary step toward determining the general fo
of small-amplitude solutions forA is to observe that Eq.~8!
in isolation has the exact solutionA(x,t)[0 independent of
the transient fieldT and of the initial distribution function
Fa(x,v). The proof of this result is somewhat tedious and
given in Appendix B. Schematically, if we draw a graph
02640
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theha-A plane showing the time-asymptotic field vs the in
tial disturbance, the solutions withA(x,t)[0 constitute a
trivial branch that coincides with the horizontal axis. The
solutions will be calledvanishing asymptotic statesand do
not necessarily correspond to solutions of the complete
tem of equations forA andT, Eqs.~5a! and~5b!. In fact, it is
not necessarily true that whenA[0 is substituted into Eq.
~5b! the resulting equation]T/]x54p(aqa*dv f a(T) will
possess a solutionT that tends to zero ast→`. If this does
happen, we will call the corresponding ‘‘point’’ on the fun
damental branch anaccessible vanishing asymptotic sta
~AVAS!. A trivial example is given by the originA[0, ha
[0 ~from which T[0 follows!. These states correspond
initial conditions such that the field is completely Land
damped before trapping effects come into play. As discus
in the Introduction, there are other initial conditions~of
larger amplitude! for which we expect the trapping effects t
lead toAÞ0; in these cases, the solutionA50 to the time-
asymptotic equation is not accessible and does not co
spond to the solution to the complete VP initial value pro
lem. The nonzero solutions can be imagined as a nontri
branch in theha-A plane, which bifurcates from the trivia
solutionsA[0 at somecritical initial condition ha[ha

0 as
the initial conditionha is changed. Physically,ha

0 marks the
transition between the two classes of initial conditions. T
determination ofha

0 will follow from the nonlinear analysis
below; we now proceed to show how the general form of
solution forA can be determined for initial conditions near
generic~given! critical initial stateA[0, T[T0 , ha[ha

0.

D. Time-asymptotic linearization

In order to study solutions forA nearA[0, T[T0 , ha

[ha
0, we first consider the time-asymptotic equation line

ized about this critical initial state. This linearization of E
~8! requires some mathematical care~see Appendix C! and
yields

ak,v i
D~k,v i !50, ~9!

whereD(k,v i) is theVlasov dielectric function

D~k,v i ![12
4p

k (
a

qa
2

ma
PE

R
dv

Fa
T08~v !

v i2kv
. ~10!

Here D(k,v i) is not determined by the Vlasov equilibrium
Fa(v) that appears in the initial distribution function; rathe
it contains a time-asymptotic equilibriumFa

T0 which includes
the effects of the transient fieldT0 that evolves from the
critical initial state@see Eq.~B4! in Appendix B for a precise
definition ofFa

T0]. Of course,T0 has to be obtained from th
transient equation, Eq.~5b!, with A[0; however, there is an
important case in whichD(k,v i) turns out not to depend on
T0 , namely, when the problem isreflection symmetric, i.e.,
even inx andv. Reflection-symmetric initial conditions oc
cur in many interesting problems@15,27# and lead to
reflection-symmetric solutions at all times. In these case
easy to show@33# that Fa

T0(v)5Fa(v). Here, we will only
6-4
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TIME-ASYMPTOTIC WAVE PROPAGATION IN . . . PHYSICAL REVIEW E68, 026406 ~2003!
consider initial conditions of this kind. This also has t
advantage that we need to consider only spatial Fou
modes withkÞ0 since, if the spatially uniform (k50) com-
ponent in the electric field is initially zero, it will remain zer
for all times.

Equation~9! can be solved immediately: it requires th
ak,v i

50 except for allk and v i that satisfyD(k,v i)50

which is theVlasov dispersion relationdetermined byFa
T0.

The properties of the Vlasov dispersion relation are w
known, especially for physically relevant Vlasov equilibri
For instance, for a Maxwellian the Vlasov dispersion cur
can be plotted easily. It shows~Fig. 1! some qualitative fea-
tures that hold in great generality, even though for a modifi
Vlasov equilibrium, likeFa

T0, it may be necessary to com
pute the exact roots ofD numerically@14#. Specifically, the
dispersion curve shows acutoff wave number kd such that for
k.kd Eq. ~10! has no solution. Moreover, given any wav
numberk<kd , Eq.~10! defines implicitly a finite numberNk
of simple real rootsv1(k),v2(k),...,vNk

(k), which means
that the general solution of the linearized time-asympto
problem will be given by a finite superposition of wav
modes of the form

A~x,t !5 (
k<kd

(
j 51

Nk

ak,v j
ei @kx2v j ~k!t#. ~11!

More precisely, since the basic wave number here isk51,
there will be%5@kd# ~the integer part ofkd) possible wave
numbers before cutoff, leading to a total ofN5(k51

% Nk pos-
sible modes.

A crucial fact about Eq.~9! is that the Fourier-Bohr trans
formation has introduced the limitt→` before the lineariza-
tion was carried out, so that the resulting linear equation
uniformly valid in time, unlike the standard linearized V
system. This is apparent in the fact that the linearization

FIG. 1. The Vlasov dispersion curve for a Maxwelliane-p
plasma withTe5Tp , and the rootsv(k) of the corresponding dis
persion relation for a basic wave numberk0 and its harmonics;k is
in units of the inverse Debye lengthkD[1/lD andv is in units of
the plasma frequencyvp .
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Eq. ~9! is not about the initial equilibriumFa(v) but about
the ‘‘final’’ equilibrium Fa

T0(v), and it is important for the
study of the nonlinear problem. Indeed, many nonlinear st
ies of the VP system@30–32# have been greatly hampered b
troublesome singularities that do not appear to be intrin
cally related to the physical nature of the problem but only
the nonuniformity in time of the standard linearization.

E. Dimensional reduction

These previous results make it possible to reduce the n
linear time-asymptotic equation, Eq.~8!, to a finite-
dimensional system of nonlinear algebraic equations for
N amplitudesak,v i

in Eq. ~11!. This is done by simply sub-
stituting Eq.~11! in the right side of Eq.~8!,1 and taking the
Bohr transform with respect tov1(k),v2(k),...,vNk

(k) for
k51,...,%. This is equivalent, of course, to projecting th
nonlinear equation onto the null space of the linearized
erator given by Eq.~9!, and yieldsN equations:

ak,v i
5

2

ik (
a

qa lim
s→`

1

s E
0

s

dt eiv i tE
2p

1p

dx e2 ikx

3E
R
dv Fa„x0

A~x,v,t !,v0
A~x,v,t !…

2
2

ik (
a

qa
2

ma
lim

s→`

1

s E
0

s

dt eiv i tE
2p

1p

dx e2 ikx

3E
R
dvE

0

t

dtH T
]Fa

]v J
@x

t
A~x,v,t !,vt

A~x,v,t !#

, ~12!

where the right side is determined by theN amplitudesak,v i

through the characteristics associated withA. In the next sec-
tion we show how, near a critical initial state~whereak,v i

[0 ; k,v i), these characteristics can be determined
Hamiltonian perturbation theory.

In summary,the time-asymptotic equation has been r
duced to a finite-dimensional problem for the (small) amp
tudes of a set of traveling-wave modes that satisfy a Vla
dispersion relation. Both the dispersion relation and the am

1By substituting the linear solution forA, Eq. ~11!, into the non-
linear time-asymptotic equation, Eq.~8!, we neglect possible
higher-order terms inA corresponding to wave modesak,v i

eikx2v i t

such thatD(k,v i)Þ0. The validity ~at leading order! of this ap-
proximation will become apparent in the course of our nonlin
analysis, in which we shall obtain the scalar equation for the a
plitude a of a two-mode time-asymptotic field with equal mod
amplitudes, Eq.~24!. That calculation could be extended to includ
higher-order wave modes such thatD(k,v i)Þ0. It is then easy to
see that these modes must beO(a3/2) and will generate terms of the
same order in the charge density. In principle, these terms are c
parable to other terms that we are going to keep in Eq.~12!; how-
ever, these latter terms are orthogonal to the wave modes c
sponding toD(k,v i)50, and will disappear under the action of th
Fourier-Bohr transform on the right side of Eq.~12!. Thus, the
leading-order contribution to Eq.~12! from the modes such tha
D(k,v i)Þ0 will turn out to be of ordera2, and negligible. This
specific result has been proved previously in a more general con
@20#.
6-5
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C. LANCELLOTTI AND J. J. DORNING PHYSICAL REVIEW E68, 026406 ~2003!
plitudes depend on the initial condition and on the transi
field. In particular, nonzero small-amplitude solutions for t
wave modes may appear when the amplitude of the in
disturbance is increased through certain critical values
other words, these nonzero undamped solutions may b
cate~as the initial condition is changed! from the trivial so-
lution branch A[0, which corresponds to a complete
Landau-damped electric field ast→`. In fact, analogous
results have been established for the original~not transiently
linearized! VP system@20#. In that case, however, it is to
difficult to carry out an explicit calculation of the time
asymptotic wave amplitudes, because of the complicated
teraction between the transient electric field and the distr
tion function. Conversely, for the transiently linearize
equations developed here the complete calculation can
carried out explicitly, as is done below.

III. THE TWO-WAVE TIME-ASYMPTOTIC PROBLEM

Let us now consider a sequence of physical problem
which a transition occurs from the strongly Landau damp
regime (A[0) to the O’Neil regime where the nonlinea
effects sustain small-amplitude wave propagation. We exp
that, as the amplitude of the initial disturbance is increa
~or dFa /dv is decreased at the ‘‘right’’ phase velocity!, at
some point a ‘‘first’’ undamped nonzero time-asympto
state will branch off the zero-field solution. It is logical t
assume that this phenomenon will not take place for all
wave numbers and frequencies at the same transition p
Rather, according to the basic insights from the standard
ear theory, the modes with the lowest wave number
highest phase velocity damp most slowly. Hence, for
single-humped~symmetric! equilibrium, the first nonzero
state should be a pair of Langmuir modes on the up
branch of the Vlasov dispersion relation~Fig. 1!, with a
‘‘fundamental’’ wave numberk5k0 determined by the initial
condition; thus,A has the two-wave form

A~x,t !52a sink0x cosvt

5a sin~k0x2vt !1a sin~k0x1vt !, ~13!

wherek0 andv satisfyD(k0 ,v)50.2 For this two-wave case
Eqs.~12! reduce to one equation fora, and@from Eq. ~13!#
the asymptotic field belongs to the one-dimensional sp
spanned by sink0xcosvt. Hence, the projection procedur
reduces to a cosine Fourier-Bohr transform~by symmetry!,
and Eq.~12! becomes

2Without loss of generality we takea>0, since its sign can be
changed arbitrarily by introducing a constant phase shiftp in Eq.
~13!. This phase will be left undetermined until later, when t
analysis of the transient problem will determine the phase
‘‘connects’’ A(x,t) to the initial condition.
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k0
(
a

qa lim
s→`

1

s E
0

s

dt cosvtE
2p

1p

dx cosk0x

3E
R
dv Fa„x0

A~x,v,t !,v0
A~x,v,t !…

2
8

k0
(
a

qa
2

ma
lim

s→`

1

s E
0

s

dt cosvtE
2p

1p

dx cosk0x

3E
R
dvE

0

t

dtFT
]Fa

]v G
@x

t
A~x,v,t !,vt

A~x,v,t !#

, ~14!

whereA is given by Eq.~13!.
The characteristics@xt

A ,vt
A# are determined by the dy

namics of particles moving in small-amplitude two-wa
fields, which have been studied by Buchanan and Dorn
@15#. They constructed small-amplitude multiple-wave so
tions to the VP system by extending the invariants origina
used to generate BGK solutions@9#. The latter are based o
an exact invariant of the motion for the single-wave pote
tial, namely, the single-particle energy. Buchanan and Do
ing found approximate invariants for multiple-wave syste
and used them to obtain generalized BGK solutions. T
simplest case is precisely the two-wave field@Eq. ~13!#. In
the upper half phase plane, where one of the two wave
located, the effect of the other wave~in the lower half plane!
can be viewed as a small perturbation of the unpertur
particle motion driven by the first wave. Application of Li
transforms shows that the energy invariant for mode1 in
isolation ~‘‘ 1’’ and ‘‘ 2’’ correspond to the upper and lowe
half phase planes!, Ea

(1)5 1
2 ma(v2vp)21(qaa/k0)cos(k0x

2vt), is modified by the presence of mode2 to become@15#

Ēa
~1 !5Ea

~1 !1
qaa

k0

v2vp

v1vp
cos~k0x1vt !1OS a2

~v1vp!2D ,

~15!

wherevp[v/k0 . The denominatorv1vp makes this invari-
ant invalid in the phase region of the second wave; in t
region, however, the same procedure yields the analog
invariant Ēa

(2) , which is obtained by switchingvp to 2vp

andv to 2v in Eq. ~15!. By combiningĒa
(1) and Ēa

(2) , it is
possible to construct a global first order invariant, who
level curves are shown in Fig. 2~a!, which gives all the in-
formation we need about the particles’ motion. Of cour
this invariant is not exact, as should be expected since
Hamiltonian system corresponding to Eq.~13! is not inte-
grable. In fact, there are small regions in the phase pl
where no invariant curves exist, because the nonlinear r
nances between the particles and the waves generate ch
trajectories. Thesestochastic layersare thin regions that
separate bounded and unbounded trajectories@see Fig. 2~b!#.
By invoking the classic Kolmogorov-Arnold-Moser~KAM !
theorem, though, Buchanan and Dorning@15# showed that
these layers are exponentially small ina and can be ne-
glected in a study of the self-consistent VP system.

Below we adapt Buchanan and Dorning’s technique a
explicitly calculate@xt

A ,vt
A#. The restriction to a two-wave

field is not essential, but the generalization to theN-wave
case, which is straightforward, becomes increasingly tedi

at
6-6
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FIG. 2. ~a! Buchanan and Dorning’s@15# approximate invariant curves for a two-wave system.~b! Level curves, stochastic layers, an
higher-order resonance islands for the same system.
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as N grows. Hence, it will be omitted in order to make th
analysis as clear as possible. For the same purpose, we
focus our nonlinear analysis of Eq.~14! on one of the sim-
plest, yet most fundamental and widely studi
@8,10,11,13,26,27#, plasma-wave problems, the evolution
a sinusoidal initial perturbationE(x,0)5â0 sink0x.3 The cor-
responding initial distributions areFa(x,v)5Fa(v)
1eha(v)cosk0x, whereFa are ~normalized! initial Vlasov
equilibria, ha are given~normalized! even functions ofv
with strong-decay properties asuvu→`, ande is related to
â0 via the Poisson equation. These initial distributio
clearly are reflection symmetric and the initial field has
spatially uniform part. Thus, as anticipated above, thek50
spatial Fourier component ofE will be zero at all times, and
we can restrict our study tokÞ0. For fixedFa andha , the
complete initial condition can be parametrized bye. Hence,
Eq. ~14! becomes an algebraic equation for the scalar
knowna in terms of the scalar parametere @and the transien
field T, which will be determined later from Eq.~5b! for a
given a#. Notwithstanding these simplifications, this initi
value problem includes all the essential features of the m
general case~i.e., a generic spatially periodic initial pertu
bation!. The analysis can be extended to more general p
lems, but only at the price of a considerable increase in
algebra.

3This implies that we are taking the leading-order time-asympt
field @Eq. ~13!# to have the same wave number as the initial pert
bation, which is fully justified based on the analysis of the transi
equation in the next section. All the higher harmonics will be
dexed byk5 lk0 with l 51,2,... ~sincek0 is the fundamental wave
number!.
02640
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A. O’Neil terms

Our analysis of Eq.~14! begins with the first term on the
right side, which corresponds to the asymptotic evolution
the initial distribution as though it were forced by a field
fixed amplitude, with no transient part. This term and tho
that follow from it will be called ‘‘O’Neil’’ terms because
their structure is loosely analogous to that of quantities t
arose in O’Neil’s calculation@8#, although that work was
restricted to a single sinusoidal wave of constant amplitu
Conversely, the second term on the right side of Eq.~14!
corresponds to the~linearized! effects of the transient field
T(x,t) on the distribution function; fora50 this term is
essentially the quantity that arises in Landau’s solution@2#.
Thus, it and its descendants will be called ‘‘Landau’’ term

We evaluate the O’Neil terms in three steps.~1! We cal-
culate explicitly the characteristics@xt

A ,vt
A# in terms of Ja-

cobi elliptic functions, via the Buchanan-Dorning techniq
@15#. ~2! Then, we take the limit ass→` by extending an
idea of O’Neil’s, who noted@8# that the distribution function
~corresponding, in his case, to the evolution along the tra
tories in a single sinusoidal wave! can be replaced in the
time-asymptotic limit by a coarse-grained version, which
obtained by averaging on each energy level of the wave
our case, we show that the limit ass→` can be carried out
by averaging on each energy level of the time-asympto
field. In practice, we do this by transforming the integratio
to action-angle variables and replacing the time average
phase-space averages over the lines of constant action~3!
Finally, we expand the resulting expression asymptotically
terms of half-integer powers of the small time-asympto
amplitudea. The details of this fairly complicated calcula
tion are given in Appendix D. The resulting expansion f
the first term on the right side of Eq.~14! is

c
-
t

6-7
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2@x1a3/21x2ea1/21x3ea3/21aK0~k0 ,v!#1O~a2!,
~16!

where

x1[2s1(
a

F uqau5

k0
5ma

3 G1/2Fd2Fa

dv2 ~vp!2
1

2vp

dFa

dv
~vp!G ,

~17!

x2[2s1(
a

saF uqau3

k0
3ma

G1/2

ha~vp!, ~18!

x3[2s2(
a

saF uqau5

k0
5ma

3 G1/2

3H d2ha

dv2 ~vp!1
1

vp

dha

dv
~vp!1

1

2vp
2 ha~vp!J , ~19!

K0~k0 ,v!5
4p

k0
2 (

a

qa
2

ma
PE

R
dv

Fa8 ~v !

vp2v
, ~20!

ands1520.67 ands250.53 are numerical constants.

B. Landau terms

Because of symmetry, we can writeT in the last term in
Eq. ~14! as a Fourier sine series T(x,t)
5(n51

` Tnk0
(t)sinnk0x. Then, a calculation very similar to

the one that led to Eq.~16!, also given in Appendix D, re-
duces the Landau terms to

a1/22G~e,T!1a3/22S~e,T!1O~a2!, ~21!

where

G~e,T![(
a

F uqau5

k0
3ma

3 G1/2

3H r1~T!
dFa

dv
~vp!1

e

2
r2~T!

dha

dv
~vp!J ,

~22!

S~e,T!5(
a

F uqau7

k0
5ma

5 G1/2H 2r3~T!
d3Fa

dv3 ~vp!

1er4~T!
d3ha

dv3 ~vp!2
l2~T!

4vp

d2Fa

dv2 ~vp!

2e
l4~T!

8vp

d2ha

dv2 ~vp!2
l1~T!

8vp
2

dFa

dv
~vp!

2e
l3~T!

16vp
2

dha

dv
~vp!J . ~23!

The operatorsr i(T) and l i(T), i 51,...,4, are defined, re
spectively, in Eqs.~D55! and ~D57! and are linear inT.
02640
C. The amplitude bifurcation problem

Combining Eqs.~14!, ~16!, and~21! gives

a2x1a3/22x2ea1/22x3ea3/22aK0~k0 ,v!

52a1/2G~e,T!2a3/2S~e,T!1O~a2!, ~24!

an explicit relationship between the ‘‘final’’ field amplitudea
and the initial amplitudee. From it we easily determine the
nature of the transition between field solutions that are L
dau damped to zero and those that approach two-wave t
asymptotic states with amplitudea. By construction,k0 and
v satisfy the time-asymptotic Vlasov dispersion relation
2K0(k0 ,v)50. Thus, Eq.~24! reduces to

a1/2@x2e2G~e,T!#1a3/2@x11x3e2S~e,T!#5O~a2!.
~25!

Near any accessible vanishing asymptotic state~critical or
not!, we write T as T01dT whereT0 is the transient field
corresponding to the AVAS itself. Since bothG and S are
linear in T, Eq. ~25! becomes

a1/2@x2e2G~e,T0!#2a1/2G~e,dT!

1a3/2@x11x3e2S~e,T0!#5O~a2,a3/2udTu!.

~26!

The possible bifurcation values, i.e., values of the param
e where nonzero solutions cross~‘‘branch off’’ ! the trivial
solution a1/250, can be found by ‘‘lifting’’ the brancha1/2

50 ~here simply dividing bya1/2) and settinga5dT50 and
e5e0 , wheree0 is the amplitude of the initial perturbatio
corresponding to the AVAS; sinceG(e0,0)50 this gives the
bifurcation condition

x2e05G~e0 ,T0!, ~27!

which also will be called thethreshold equation, since e
5e0 represents a critical initial amplitude, i.e., a value ofe
where the time-asymptotic behavior of the electric field m
change from that of a vanishing state to that of a nonz
state ~or vice versa!. This equation has a clear physic
meaning: it expresses the balance between the effects o
initial transient @contained in G, which depends on
(dFa /dv)(vp) and (dha /dv)(vp)], and the long-time
trapped-particle effects generated by the initial perturbat
@contained inx2 , which depends onha(vp)]. In the case of
single-humped unperturbed equilibria,G measures the
strength of the Landau damping rate, whilex2 expresses the
ability of the initial perturbation to generate a plateau at
phase velocity via particle trapping.

Takinge0 to be known from Eq.~27!, a local analysis can
be performed to determine the bifurcating solution bran
Expansion of Eq.~26! aboute5e0 yields

@x22Ge~e0 ,T0!#De2G~e0 ,dT!1a@x11x3e02S~e0 ,T0!#

5O~a3/2,audTu,aDe,udTuDe!, ~28!

whereDe[e2e0 and
6-8
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TIME-ASYMPTOTIC WAVE PROPAGATION IN . . . PHYSICAL REVIEW E68, 026406 ~2003!
Ge~e0 ,T0![
]G

]e
~e0 ,T0!5

1

2 (
a

F uqa
5 u

k0
3ma

3 G1/2

r2~T0!
dha

dv
~vp!.

~29!

Equation~28! gives an explicit approximation to Eq.~26!;
thus it could be solved to provide an approximate solution
Eq. ~14!. In fact, it shows the qualitative dependence ofa on
e: clearly,a undergoes a transcritical bifurcation at the cri
cal initial amplitudee0 , with the nonzero solutions fora
crossing the basic brancha50 at a finite angle. In order to
have quantitative results, however, we have to calculate
coefficients in Eqs.~27! and ~28!, which depend onT(x,t),
treated thus far as a parameter; indeed, Eq.~14! must be
understood as part of a coupled system of equations fora and
T, Eqs.~5!. Hence, we now turn to the transient part of t
VP problem.

IV. TRANSIENT FIELD EXPANSION

Substituting Eq.~7! into Eq. ~5b! yields the transient
equation, which we solve via a perturbation expansion
T(x,t) in powers of the deviation of the initial conditio
from the AVAS under consideration. BecauseA(x,t) has
been subtracted fromE(x,t) and its nonlinear effects on th
particle trajectories computed analytically, the perturbat
solution forT(x,t) will be spared the disruptive secularitie
that arise in standard perturbation treatments of the VP
tem which use the complete fieldE(x,t).

Here we shall not assumea priori @as in Eq.~13!, see
footnote 3# that the time-asymptotic field has the same wa
numberk0 as the initial condition; rather, we shall write

A~x,t !52a sinkfx cosvt

5a sin~kfx1vt !1a sin~kfx2vt ! ~30!

and then prove that indeedkf5k0 . Below, the transient
equation will be expanded in the neighborhood of a giv
critical amplitudee0 in the small amplitudesa andDe ~Fig.

FIG. 3. Local analysis at a critical initial amplitudee0 in thee-a
plane.
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3!. However,a itself ultimately depends onDe, so thatboth
T anda must be expanded inDe. Since the expansion of th
time-asymptotic equation generated half-integer powers oa,
half-integer powers ofDe may be needed~at higher order! to
have consistent expansions fora andT. Thus, our focus be-
ing on first order terms, we introduce the truncated exp
sion for T:

T~x,t !5T~0!~x,t !1DeT~1!~x,t !1O~De3/2!. ~31!

Substituting Eq.~31! into Eq. ~28! @with T0[T(0) and dT
[DeT(1)1O(De3/2)] gives4

a52
@x22Ge~e0 ,T~0!!2G~e0 ,T~1!!#

@x11x3e02S~e0 ,T~0!!#
De1O~De3/2!.

~32!

A. Small critical initial amplitudes

We first calculate the transient fieldalongthe basic branch
a50, which providesT0[T(0) and also is necessary to de
terminee0 from Eq. ~27!. Even fora50, the leading-order
expansion of the transient equation is rather tedious; henc
is developed in Appendix E 1 which leads to the followin
equation for the Fourier-Laplace-transformed zeroth-or
transient electric fieldT̃k

(0)(p):

Dk~p!T̃k
~0!~p!2e0Ck~p!@ T̃k1k0

~0! ~p!1T̃k2k0

~0! ~p!#

5e0dk,k0
Nk~p!, ~33!

whereNk(p) andDk(p) are the same quantities that appe
respectively, in the numerator and the denominator in La
au’s solution to the standard linearized initial value proble
@2# ~for the initial conditionFa),

Nk~p!52
4p i

k2 (
a

qaE
R
dv

ha~v !

v2 ip/k
, ~34!

Dk~p!511
4p

k2 (
a

qa
2

ma
E

R
dv

Fa8 ~v !

v2 ip/k
, ~35!

and

Ck~p![2
2p

k2 (
a

qa
2

ma
E

R
dv

ha8 ~v !

v2 ip/k
. ~36!

4The sign ofa @taken to be positive after postulating an approp
ate phase shift in Eq.~13!# depends here on the signs ofDe and its
coefficient. In turn,De must have the same sign ase0 , when study-
ing the transition from completely Landau damped solutions
small-amplitude nonzero time-asymptotic solutions. Neverthel
if a in Eq. ~32! is negative, one can immediately find a solution wi
a.0 simply by considering a perturbation2De to a critical ampli-
tude 2e0 . This is equivalent to applying the coordinate transfo
mationx→2x, v→2v, corresponding to the reflection symmetr
6-9
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C. LANCELLOTTI AND J. J. DORNING PHYSICAL REVIEW E68, 026406 ~2003!
Equation~33! is very similar to the equation that results fro
Landau’s solution to the linear VP system@2#. The main
difference is that, because of the spatially nonuniform par
the initial distributionFa , the equations for different value
of k are coupled. Hence, Eq.~33! is an infinite system and its
solution will require an approximation. In general, numeric
approximation could be used, which then would lead to
solution of Eq.~27! for general~not small! critical ampli-
tudes. Here, however, we are interested in small initial p
turbations, i.e.,e!1; hencee0!1. Thus, further expanding
T̃k

(0) in powers ofe0 ,

T̃k
~0!5e0T̃k

~0,1!1e0
2T̃k

~0,2!1¯1e0
mT̃k

~0,m!1¯ , ~37!

substituting into Eq.~33!, and solving at each order ine0
straightforwardly yields

T̃k
~0,1!~p!5dk,k0

Nk0~p!

Dk0
~p!

,

T̃k
~0,2!~p!5dk1k0 ,k0

Nk1k0
~p!Ck~p!

Dk1k0
~p!Dk~p!

1dk2k0 ,k0

Nk2k0
~p!Ck~p!

Dk2k0
~p!Dk~p!

5dk,2k0

Nk0
~p!C2k0

~p!

Dk0
~p!D2k0

~p!
,

T̃k
~0,3!~p!5dk,3k0

Nk0
~p!C2k0

~p!C3k0
~p!

Dk0
~p!D2k0

~p!D3k0
~p!

1dk,k0

Nk0
~p!Ck0

~p!C2k0
~p!

Dk0
~p!2D2k0

~p!
. ~38!

The expressions forTk
(0,m) can be obtained by inverting th

Laplace transforms.@In particular,T̃k
(0,1)(p) yields Landau’s

classic damped solution.#
s
au
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Clearly, there are initial conditions for which this solutio
is not acceptable, because it does not vanish ast→`. For
linearly stable initial equilibriaFa , the standard results fo

the zeros ofDk(p) ensure thatT̃k
(0)(p) have no poles with

real parts>0, so limt→` Tk
(0)(t)50. But for initial conditions

such that the standard linear theory predicts traveling-w
or growing-wave solutions, limt→` Tk

(0)(t)Þ0. This is per-
fectly reasonable, because in these cases we expect tha
asymptotic amplitude of the waves will be nonzero, no m
ter how small the initial amplitude is; thus, no solutions forT
can be found along the axisa50 and the vanishing
asymptotic states are not accessible, which is consistent
our earlier remark that the solutionA[0 for Eq. ~5a! does
not necessarily correspond to a solution of the complete
tem Eqs.~5! for both A andT.

The perturbation solution forT(0), Eq. ~38!, enables us to
compute explicitly the quantities that appear in the thresh
equation~for kf5k0), Eq. ~27!. The details, given in Appen
dix E 2, lead to the following equation for the~small! critical
amplitudee0 :

x2e05e0s1S1,1
~0,1!(

a
F uqau5

k0
3ma

3 G1/2dFa

dv
~vp!

24e0
2H s2S2,2

~0,2!(
a

saF uqau5

k0
3ma

3 G1/2dFa

dv
~vp!

1
s2

2
S1,2

~0,1!(
a

saF uqau5

k0
3ma

3 G1/2dha

dv
~vp!J 1O~e0

3!.

~39!

Clearly, this equation has the fundamental zero-field solut
e0

(0)50, corresponding to a zero initial amplitude. In th
case Eq.~5b! has the trivial solutionT0[0, and the threshold
equation is obviously satisfied, sinceG(0,0)50. This just
corresponds to the trivial solutionE5A5T[0, f a[Fa .
More interestingly, Eq.~39! also yields
e0
~1!5

s1(asa@ uqau3/ma#1/2ha~vp!1s1S1,1
~0,1!(a@ uqau5/ma

3 #1/2~dFa /dv !~vp!

4s2S2,2
~0,2!(asa@ uqau5/ma

3 #1/2~dFa /dv !~vp!12s2S1,2
~0,1!(asa@ uqau5/ma

3 #1/2~dha /dv !~vp!
, ~40!
os-

ith

ns
li-
a nonzero critical amplitude, at which a nontrivial solution
branch fora crosses the axisa50 ~Fig. 3!. Since Eq.~40!
was derived via an expansion for smalle0 , consistency re-
quires thate0

(1) be close toe0
(0)50. Whenever the initial con-

dition is such thate0
(1) in Eq. ~40! doesnot satisfy ue0

(1)u
!1, there is no~nonzero! small-amplitude critical point cor-
responding tokf5k0 , and all small sinusoidal perturbation
to a linearly stable Vlasov equilibrium undergo Land
damping to zero. Of course, this does not preclude the p
sibility of a nonsmall critical amplitude.

B. The critical amplitude e0
„0…Ä0

We next determine the transient field for solutions w
aÞ0. We begin from the ‘‘trivial’’ critical amplitudee0

(0)

50, and we seek small-amplitude time-asymptotic solutio
close to it, and look for a branch of time-asymptotic amp
6-10
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TIME-ASYMPTOTIC WAVE PROPAGATION IN . . . PHYSICAL REVIEW E68, 026406 ~2003!
tudes that bifurcates frome050, a50 in the e-a plane.
Whether such a branch exists is physically important beca
it determines the time-asymptotic stability of the plasma.
deed, such a branch would imply that there are arbitra
small initial conditions that do not damp and lead to tim
asymptotic multiple-mode traveling-wave solutions of t
Buchanan-Dorning@15# type ~in the coarse-grained sense d
scribed above!. If no branch bifurcates frome0

(0) , it will be
necessary to consider the nonzero critical amplitudee0

(1) in
Eq. ~40! as another possible branching point for nonze
time-asymptotic solutions, since in this case initial con
tions with amplitudese,e0

(1) would have to be damped t
zero. Even then, though, the analysis ate05e0

(0) will be im-
portant, because it will provide the leading order term in
expansion of the transient equation ate05e0

(1) with respect
to the small critical amplitudee05e0

(1)!1.
For e050 andT0[0 several terms in the transient equ

tion are zero, and a tedious but straightforward extens
@33# of the calculation that led to Eq.~33! yields @for Re(p)
>0]

Dk~p!T̃k
~1!~p!5dk,k0

Nk~p!2dk,kf
Dk~p!Ãk

~0!~p!, ~41!

whereAk
(0)(p) is the Fourier-Laplace transform ofA in Eq.

~30! for e050, i.e.,

Ãk
~0!~p![E

0

`

dt e2ptAk~ t !5dk,kfF a0

~p1 ik fvp!
1

a0

~p2 ik fvp!G
~42!

with

a0[2
1

x1
@x22G~0,T~1!!#, ~43!

which follows from evaluating Eq.~32! at e050 @where
T(0)[0 and theDe has canceled withe’s multiplying the first
two terms in Eq.~41!#. Equation~41! is similar to the equa-
tion that arises in Landau’s analysis@2#. In fact, it could be
obtained formally from Landau’s solution by simply decom
posing the field intoT1A, moving A to the right side, and
assuming it to be of the form in Eq.~30!. However, Eq.~41!
is an equation forT anda, not E and must be solved simul
taneously with Eq.~25! in such a way that limt→` T(x,t)
50.

If kfÞk0 , for k5kf Eq. ~41! gives T̃kf

(1)(p)52Ãkf

(0)(p),

which is clearly unacceptable. Hence, the initial value pr
lem cannot have a nonzero time-asymptotic solution of
form in Eq.~30! unlesskf5k0 , as anticipated in the previou
section~see footnote 3!. Thus, letkf5k0 ; if kÞkf5k0 , Eq.
~41! implies that T̃k

(1)(p)[0, so that the transient has n
leading-order component with that wave number. We c
clude that the only relevant spatial Fourier mode inT must
correspond tok5kf5k0 . Thus, the solution to Eq.~41! is

T̃k0

~1!~p!5
Nk0

~p!

Dk0
~p!

2Ãk0

~0!~p!. ~44!
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Applying Landau’s procedure@2# to this equation, the
transient fieldT is obtained as a sum of exponential term
each corresponding to a pole of@Nk0

1 (p)/Dk0

1 (p)#2Ãk0

(0)(p)

whereNk0

1 andDk0

1 are the analytic continuations ofNk0
and

Dk0
@2#. Under Landau’s assumptions@2# on the analyticity

of Fa and ha , this function hastwo kinds of pole:~a! the
poles associated with the zeros ofDk0

1 , and~b! the poles of

Ãk0

(0)(p) at p56 ik0vp @from Eq. ~42!#. The crucial point is

that the extra poles, corresponding toÃk0

(0)(p), lie on the

imaginary axis. But sinceT is the transientfield, it cannot
include undamped terms, and a necessary condition for
existence of solutions to Eq.~41! is that the residues of

@Nk0

1 (p)/Dk0

1 (p)#2Ãk0

(0)(p) at p56 ik0vp must be zero. We

classify the situations that lead to this condition according
the nature of the roots ofDk0

1 .

~I! First, all the roots ofDk0

1 have Re(p),0. Then, for the

residues atp56 ik0vp to be zeroa0 must equal zero. Hence
all time-asymptotic solutions with initial amplitudes in th
neighborhood ofe050 coincide with the brancha50 @with
errors of orderO(e3/2)] and correspond to complete Landa
damping, notwithstanding the trapping effects. Then nonz
solutions for the time-asymptotic electric field will be po
sible only for initial amplitudes greater than some nonze
critical value, like e0

(1) in Eq. ~40!. This situation will be
considered in the next subsection.

~II ! Next,Dk0

1 has roots with Re(p).0. Then the solutions

for T contain growing modes, which is not acceptable. Th
for the choices ofFa that lead to this situation, there is n
small-amplitude time-asymptotic solution in the neighbo
hood ofe050, not evena50. This leads us to the conjectur
that in these linearly unstable cases the time-asymptotic fi
amplitude tends to a nonzero value ase→0. This problem,
although interesting, will not be further pursued here.

~III ! Finally, Dk0

1 has poles with Re(p)<0. This includes

poles on the imaginary axis, corresponding to a pair of
genvalues embedded in the Van Kampen–Case@3,4# con-
tinuous spectrum for the linearized VP system. These po
produce undamped terms that must cancel with those com
from Ãk0

(0)(p), in order to have a valid solution. Evaluatin

the Landau dispersion relation on the imaginary axis a
separating the real and imaginary parts gives

11
4p

k0
2 (

a

qa
2

ma
PE

R
dv

Fa8 ~v !

v2l/k0
50, ~45!

(
a

qa
2

ma
Fa8 ~l/k0!50, ~46!

where l5 ip, lPR. Equation~45! is the time-asymptotic
Vlasov dispersion relation~for symmetric initial conditions
and under the approximation of transient linearization!. The
residues atp56 ik0vp can be zero only if~i! l56k0vp

satisfies Eqs.~45! and ~46!, and~ii ! the residues ofNk0

1 /Dk0

1

at p56 ik0vp are equal to those ofÃk0

(0)(p), i.e., equal toa0 .
6-11
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C. LANCELLOTTI AND J. J. DORNING PHYSICAL REVIEW E68, 026406 ~2003!
In the context of the two-wave case, we consider the sit
tion in which Eq.~45! has just one pair5 of simple roots on
the imaginary axisp57 ik0vp or l56k0vp , which satisfy

(
a

qa
2

ma
Fa8 ~6vp!50. ~47!

A Taylor expansion@6# of Dk0

1 about6 ik0vp yields the resi-

dues at these poles:

ResS Nk0

1

Dk0

1 ,6 ik0vpD
52

k0(aqa@P*R dv ha~v !/~v6vp!1 ipha~vp!#

(a~qa
2/ma!@P*R dv Fa9 ~v !/~v6vp!1 ipFa9 ~vp!#

.

~48!

~Here and below the symmetries ofFa , ha , Fa8 , etc., allow
us to replace6vp by vp in their arguments.! This expression
must be set equal toa0 , which is obtained from Eqs.~43!,
~17!, ~18!, and ~22!. The expression fora0 can be made
somewhat simpler if Eq.~47! is replaced by the slightly
stronger condition (dFa /dv)(vp)50 (a51,2,...,NS). In
many physical situations the two will be equivalent~e.g., in
an ion-electron plasma, in which the charge-mass ratio
the electrons is much larger than for all the other spec
combined!. Then, Eq.~43! @with Eqs. ~17!, ~18!, and ~22!#
yields

a052
k0(asa@ uqau3/ma#1/2ha~vp!

(a@ uqau5/ma
3 #1/2Fa9 ~vp!

. ~49!

For @Nk0

1 (p)/Dk0

1 (p)#2Ãk0

(0)(p) to have zero residues a

6 ik0vp , Eqs.~48! and ~49! must be equal, up to a possib
change in the sign ofa0 due to the choice of the phase
A(x,t) in Eq. ~13!.6 Setting the real part of Eq.~48! equal to

5In special cases Eq.~45! could haveN ~.1! pairs of roots on the
imaginary axis. Then, theAnsatzwould be extended to include u
to 2N waves. If conditions~i! and~ii ! were satisfied at all 2N poles,
we would associate a time-asymptotic wave mode with each roo
Dk0

1 on the imaginary axis. However, here we focus on the tw
wave case, both because cases withN.1 are exceptional and be
cause the extension to those cases is straightforward, although
tedious.

6We remarked in footnotes 2 and 4 thata5a0De can always be
made positive via an appropriate choice of the phase ofA(x,t), and
that this might require us to replaceDe by 2De if a0,0. However,
until this point it was not clear why the sign ofa should be chosen
positive or negative. Now, the transient analysis gives the nat
criterion to determine the phase ofA(x,t) ~and the sign ofa! for a
given initial condition: the phase ofA(x,t) must be chosen so tha
it is consistent with the phase of the corresponding linear mo
~with phase velocities6vp), whose amplitude is given by the rea
part of Eq.~48!. Indeed, we know that these linear modes correc
describe theinitial wave propagation, and thatA(x,t) must ‘‘re-
place’’ them in the nonlinear regime. Hence, the sign ofa0 must be
the same as the sign of the real part of Eq.~48!.
02640
a-

r
s

a0 and the imaginary part equal to zero yields the twofo
condition

6
(asa@ uqau3/ma#1/2ha~vp!

(a@ uqau5/ma#1/2Fa9 ~vp!

5
(aqaha~vp!

(a~qa
2/ma!Fa9 ~vp!

5
(aqaP*R dv ha~v !/~v2vp!

(a~qa
2/ma!P*R dv Fa9 ~v !/~v2vp!

, ~50!

where the sign of the left-most term must be chosen to
equal to the sign of the middle term to ensure that the n
linear solution connects smoothly to the linearized initial s
lution, from which it evolves after particle trapping becom
significant.

When both Eqs.~47! and ~50! are satisfied, Eq.~41! has
an acceptable solution forTkf

(1) , which goes to zero ast

→`. This solution is basically Landau’s solution for th
given initial condition, minus the ‘‘undamped’’ terms tha
correspond to the poles on the imaginary axis. Indeed,
inverse Laplace transform of Eq.~44! yields a sum of expo-
nentials corresponding to all the roots of Eq.~50!. The ‘‘lin-
ear’’ contributions due to these two roots are replaced exa
by the time-asymptotic fieldA, which is given by Eq.~30!
with a5a0De. Equation ~50! ensures that the time
asymptotic wave amplitude is equal to the amplitude of
corresponding modes in the linear theory. Thus, as long
Eq. ~50! is satisfied the electric field solution from the no
linear theory is actually the same~for case III! as that from
the linear analysis, not only initially but at all times. Clearl
this happens only because we are considering the sp
case of initial Vlasov equilibria with zero derivatives at th
phase velocities. Nevertheless, the solution for the distri
tion function, inside thev integrals in Eq.~7!, is completely
different from the solution to the linearized problem; in pa
ticular, it contains the trapping effects via the characteris
for the time-asymptotic fieldA. Thus, Eq.~50! gives anon-
linear criterion that determines which small-amplitude initi
conditions lead to time-asymptotic traveling-wave solutio
According to the standard linear theory, this happens wh
ever Eqs.~45! and ~46! hold. Unfortunately this is only an
initial time result, and it is not at all clear from the linea
theory whether the Landau modes corresponding to pole
the imaginary axis can keep traveling unchanged in the n
linear regime, i.e., when the trapping effects become
evant. Equation~50!, however, ensures precisely that the u
damped modes generated by the polesp56 ik fvp are
consistent with the nonlinear dynamics, and will keep tra
eling at the same amplitude in the time-asymptotic limit.

An important example of an initial condition that satisfi
Eq. ~50! is provided by Buchanan and Dorning’s undamp
two-wave BGK-like solutions@15# ~see Appendix F here!.
Thus, those solutions are a special case of the solutions
veloped here. What characterizes BGK and ‘‘BGK-like’’ s
lutions is that the distribution function is constant along t
level curves of suitable invariants for single-particle moti
~such as the energy in true BGK solutions or Buchanan
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TIME-ASYMPTOTIC WAVE PROPAGATION IN . . . PHYSICAL REVIEW E68, 026406 ~2003!
Dorning’s two-wave approximate invariants in BGK-like s
lutions!, so that there is no energy exchange between
plasma and the field. Equation~50! provides a generalized
BGK condition on the initial distribution in the sense tha
even when the resulting solution is not really BGK-like, t
resonant wave-particle interactions are sufficiently ‘‘gent
that small-amplitude wave propagation still occurs. The
solutions provide the only nontrivial solution branch throu
the origin in thee-a plane.

Interestingly, in the time-asymptotic limit the distributio
function becomes macroscopically equivalent to the coa
grained BGK-like distribution obtained by averagingf a over
the two-wave approximate invariant curves. By ‘‘macr
scopically equivalent’’ we mean that, when integrated o
phase space, the two distribution functions produce the s
macroscopic quantities~see Appendix D, Proposition 1!. In
this coarse-grained sense, the solutions that we have obta
evolve in time to reach BGK-like states as the outcome
the non-linear dynamics, whereas the undamped solut
obtained by Buchanan and Dorning@15# have to be set up by
an initial distribution function that already has exactly t
structure of a BGK-like solution.

C. The nonzero critical amplitude e0
„1…

In case I above we established that whenever the in
Vlasov equilibrium is linearly stable the only solution bran
through e05e0

(0)50 is the basic brancha50. Hence, we
must raise the question whether there are nonzero ti
asymptotic solutions that branch froma50 at a nonzero
critical initial amplitude. Equation~40! gives the small non-
zero critical initial amplitudee0

(1) , which is a possible
threshold separating the initial conditions that result in La
dau damping to zero from those that lead to traveling-w
solutions withaÞ0. To find such nonzero time-asymptot
solutions, we now study the transient equation in the nei
borhood ofe0

(1) . This is also done via a perturbation expa
sion, first in powers ofa andDe, and then in powerse0

(1) @to
invert the linear operator on the left side of Eq.~33!#. Fortu-
nately, all the leading-order information can be obtain
from a simple extension of the analysis carried out in S
IV B for the ‘‘trivial’’ critical initial amplitude e0

(0)50.
At zeroth order inDe, of course, we have the purely tran

sient field T0[T(0), which was already computed in Eq
~38!, but now withe05e0

(1) . At first order inDe we expand

the first order termT̃k
(1) in powers ofe0

(1) , in the form

T̃k
~1!5T̃k

~1,0!1e0
~1!T̃k

~1,1!1¯ . ~51!

The equation forT̃k
(1,0) is identical to Eq.~41! ~which corre-

sponds to the limite0
(1)→0). Hence, the same argumen

used before show that solutions witha0Þ0 are possible only
if k5k05kf , and thatT̃k0

(1,0)(p) must be obtained from the

analysis of the poles of the function@Nk0

1 (p)/Dk0

1 (p)#

2Ãk0

(0)(p). Again, Ãk0

(0)(p) has poles6 ik0vp , whose resi-

dues must be zero to have a valid solution forTk0

(1,0)(t). Since
02640
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we are considering initial conditions near linearly stab
equilibria, the residue cannot be exactly zero ifa0Þ0, just as
in case I above. However, it can be approximately zero, w
the same accuracy ine0

(1) asT̃k
(1,0) itself. The necessary con

dition for this is that6 ik0vp must be roots of the Landa
dispersion relationDk0

1 (p)50 at zero order ine0
(1) . ~They

cannot be exact roots because in the case being consid
all the roots have negative real parts.! Hence,

Dk0

1 ~6 ik0vp!

511
4p

k0
2 (

a

qa
2

ma
FPE

R
dv

Fa8 ~v !

~v6vp!
1 ipFa8 ~7vp!G

5O~e0
~1!!. ~52!

Since 6vp satisfy the Vlasov dispersion relation, this
equivalent to

(
a

qa
2

ma
Fa8 ~7vp!5O~e0

~1!!. ~53!

Obviously, this is a generalization of Eq.~47!: it indicates
that for there to be a small critical amplitude, the derivati
of the initial Vlasov equilibrium at the phase velocity mu
be small, so that Landau damping is weak and even a s
initial disturbance has the possibility of trapping particles.
what follows, Eq.~53! will be taken to be a consequence
the stronger condition

dFa

dv
~6vp!5O~e0

~1!! a51,2,...,Ns . ~54!

Then, the residue calculation forNk0

1 /Dk0

1 is the same as in

case III, since Eq.~47! holds at zeroth order and leads to th
same expression as in Eq.~48!. Similarly, a0 has the same
expression at zeroth order in Eq.~49!. Hence, the same ar
gument as in the casee050 shows that the initial distribu-
tion must satisfy~now at leading order! the conditions in Eq.
~50!, in order for small-amplitude nonlinear wave propag
tion to be possible in the neighborhood of the small critic
amplitudee0

(1) . Then, the solution forT is

T~x,t !5e0
~1!T~0,1!~x,t !1DeT~1,0!~x,t !1O~e0

~1!De!,
~55!

whereT(0,1) is Landau’s damping solution for the given in
tial condition andT(1,0) is the same Landau solution minu
the contributions from the poles that correspond~at zeroth
order! to the time-asymptotic phase velocities6vp .

The fieldA is given, of course, by the two-wave solutio
in Eq. ~30!, with kf5k0 and amplitudea obtained from Eq.
~32! ~see Appendix E 3 for the detailed calculation!. To first
order in bothDe ande0
6-13
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a5H 2
k0(asa@ uqau3/ma#1/2ha~vp!

(a@ uqau5/ma
3 #1/2Fa9 ~vp!

1
(a@ uqa

5 u/k0
3ma

3 #1/2@2sae0
~1!s2S1,2

~0,1!ha8 ~vp!2s1S1,1
~1,0!Fa8 ~vp!#

s1(a@ uqau5/k0
5ma

3 #1/2Fa9 ~vp!

1
x2x3e0

~1!1x2(a@ uqau5/k0
5ma

3 #1/2$~s1/2vp!Fa8 ~vp!2e0
~1!~ uqau/ma!@s2S1,1

~0,1!Fa-~vp!2s1S1,3
~0,1!~1/4vp!Fa9 ~vp!#%

@s1(a@ uqau5/k0
5ma

3 #1/2Fa9 ~vp!#2 J De,

~56!
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where theSi , j
(m,n) are given by Eqs.~E9!, ~E10!, and ~E14!.

Equation~56! gives the nonzero final amplitude thatE5A
1T reaches via particle trapping after slow initial Land
damping. In the limite0

(1)→0 this branch reduces to Eq.~49!
@recall Fa8 (vp)5O(e0

(1))], i.e., a solution branch coming
from the origin in thee-a plane and corresponding to
~possibly infinitesimal! ‘‘flat spot’’ on the initial Vlasov equi-
librium. The corresponding distribution function is aga
given by the integrand in Eq.~7! and is equivalent to a BGK
like distribution in the sense discussed in the previous s
tion; namely, ast→` f a generates the same macrosco
quantities as the coarse-grained function which is obtai
by averagingf a in phase space along the ‘‘invariant curve
for the fieldA. In this sense, these time-asymptotic solutio
to the VP system can be viewed as a generalization of
multiple-traveling-wave BGK-like solutions of Buchana
and Dorning@15#. The solutions obtained here, of cours
exist only for initial field amplitudes above the thresho
value given by Eq.~40! and have time-asymptotic ampl
tudes given by Eq.~56!.

V. CONCLUSION

Particle trapping effects are ubiquitous in plasma phys
Even in simple situations, however, the theoretical und
standing of these effects is severely limited by our inabi
to analyze~except possibly by large-scale numerical simu
tions! the nonlinear equations that model self-consist
field-particle interactions. In this article we have studi
what is possibly the most fundamental example of nonlin
wave-particle dynamics, the one associated with longitud
waves in a collisionless plasma. This classic problem, o
referred to as ‘‘nonlinear Landau damping,’’ is fairly we
understood in the two limiting cases of strong Landau dam
ing @2# and weakly damped trapping-dominated wave pro
gation@8,9#. Conversely, there is very little understanding
the difficult ‘‘intermediate’’ regime in which the two time
scales associated with linear Landau damping and with
ticle trapping are of the same order of magnitude; hence,
goal has been to study this intermediate regime. The fact
the same type of initial disturbance~e.g., a single-mode sin
wave! can, depending on its amplitude, be Landau dampe
zero or evolve to traveling-wave behavior@8# suggests tha
there must be a threshold~a ‘‘critical initial amplitude’’!
separating the initial conditions that lead to these two v
different time-asymptotic states. The existence of suc
threshold is strongly supported by numerical simulatio
showing that small-amplitude electric fields are damped
02640
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zero, whereas initial conditions of larger amplitude evolve
nonzero multiple-wave final states@26,27#. In this article we
have developed analytical expressions both for the thres
and for the amplitude of the time-asymptotic superimpos
traveling waves that evolve from initial conditions with am
plitudes just above the threshold.

In the first part of the paper~Sec. II! we developed a
general technique for studying self-consistent wave-part
dynamics. This technique, which has wider applicability,
based on two essential ideas. The first follows from the
servation that, for initial conditions with amplitude jus
above the threshold, the time-asymptotic electric field
given by a superposition of small-amplitude BGK-like wa
modes, each of which satisfies a Vlasov dispersion relat
Thus, the problem of solving the Vlasov-Poisson equation
long times can be reduced to the determination of a fin
number of time-asymptotic amplitudes~one for a symmetric
pair of waves!. The second essential idea is that, since
general form of the time-asymptotic field is a discrete sup
position of small-amplitude waves, the long-time solutions
the Vlasov-Poisson equations can be approximated via ‘‘tr
sient linearization,’’ i.e., by linearizing only the interactio
between the distribution function and the transient part of
electric field, while keeping the full nonlinear wave-partic
interaction in the limitt→`. Under this approximation, the
equations can be solved exactly via Hamiltonian perturba
theory.

The detailed solution, given in Sec. III for the importa
case of a sinusoidal initial disturbance@8#, shows that, as the
initial amplitudee of the perturbation is increased through
certain threshold, the time-asymptotic wave amplitudea
changestranscritically ~i.e., at a finite angle! from zero
~complete Landau damping! to a nonzero value~traveling-
wave propagation!; the dependence of the final amplitudea
on the initial amplitudee near the threshold is given by Eq
~32!. The threshold itself satisfies a scalar equation, Eq.~27!,
which depends on the details of the initial distribution fun
tion. Naturally, the equations for the threshold and the tim
asymptotic field amplitude have coefficients that depend
the transient part of the electric field; hence, these gen
equations must be combined with analysis of the trans
behavior. That analysis was presented in the last part of
paper~Sec. IV! for the more restricted but very importan
case in which the critical initial amplitude~or threshold! it-
self is small. Physically, this occurs when linear Land
damping is weak, so that even a small initial perturbat
from zero is sufficient to cause particle trapping and evo
tion to self-sustained traveling-wave modes. In this case,
6-14
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transient behavior could be analyzed via straightforward p
turbation expansions, which led to two types of long-tim
solutions.

The solutions of the first type~Sec. IV B! are those in
which the threshold in the initial amplitude is actually zer
These solutions, for arbitrarily small perturbations of linea
stable equilibria, are non-BGK-like solutions that are n
Landau damped to zero; rather, they evolve to undam
multiple traveling waves.~They include as a special cas
undamped small-amplitude multiple-wave BGK-like sol
tions reported previously@15#.! The solutions of the secon
type ~Sec. IV C! branch from the trivial zero-field time
asymptotic solution at a nonzero threshold and lead to n
zero final electric field states given by a nonlinear super
sition of traveling-wave modes. The analysis yield
completely explicit results for the threshold Eq.~40! and for
the final amplitude of the time-asymptotic field generated
initial perturbations just above the threshold Eq.~56!. Inter-
estingly, recent large-scale numerical simulations@24# have
already confirmed these results, which were summarized
lier in a brief communication@18#.
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APPENDIX A: RANGE OF VALIDITY
OF THE TRANSIENT LINEARIZATION

To establish the range of validity of the transiently linea
ized Vlasov equation, Eq.~6!, we consider the error intro
duced in replacingf a by Fa in Eq. ~7!:

Ra~x,t !5
qa

ma
E

R
dvE

0

t

dtH TF] f a

]v
2

]Fa

]v G J
@x

t
A~x,v,t !,vt

A~x,v,t !#

.

~A1!

The Fourier coefficients of the ‘‘residual’’ become, after e
changing the order of integration, performing the are
preserving transformation of the (x,v) integration variables
to (x̄,v̄)5@xt

A(x,v,t),vt
A(x,v,t)#, and integrating by parts,

Ra,k~ t !5
qa

ma

k

ip E
0

t

dtE
2p

1p

dx̄E
R
dv̄

]xA

] v̄
~ x̄,v̄,t!

3e2 ikxA~ x̄,v̄,t!T~ x̄,t!@ f a~ x̄,v̄,t!2Fa~ x̄,v̄ !#.

~A2!

HerexA(x,v,t) is the ‘‘direct’’ trajectory, i.e., the position a
time t of a particle starting from the pointx̄,v̄ at time zero.
For the multiple-wave time-asymptotic fields that we co
sider, the functionxA( x̄,v̄,t) can be computed explicitly via
the Buchanan-Dorning perturbation method@15#, in which
the phase plane is divided into separate regions so tha
problem in each region can be reduced to motion in an
tonomous, integrable system. Then the functionxA can be
obtained explicitly in terms of elliptic functions an
02640
r-

.

t
d

n-
-

y

ar-

y

-

-

-

he
u-

(]xA/] v̄)( x̄,v̄,t)5da
A( x̄,v̄,t)t where da

A( x̄,v̄,t) is a uni-
formly bounded function whose detailed expression is
important here.

To estimate the order of magnitude ofRa,k , we restrict
the domain of thev̄ integration to a finite intervalQ,R that
represents the ‘‘width’’ of the distribution functions~i.e., the
temperature of the plasma!. SinceFa and f a are assumed to
have strong decay properties,Q can be chosen so that th
error introduced by the restriction of the domain is of high
order. Likewise, assumingtT(x,t) to be integrable int, there
must be a positived such that; x

E
0

d
utT~x,t !udt@E

d

1`

utT~x,t !udt. ~A3!

Clearly,d is smaller if the rate of decay ofT is greater. When
t.d, replacingR by Q, and using Eq.~A3! and the uniform
boundedness off a2Fa and da

A , Eq. ~A2! can be well ap-
proximated as

Ra,k~ t !;
qa

ma

k

ip E
0

d
dtE

2p

1p

dx̄E
Q

dv̄
]xA

] v̄
~ x̄,v̄,t!

3e2 ikxA~ x̄,v̄,t!T~ x̄,t!@ f a~ x̄,v̄,t!2Fa~ x̄,v̄ !#.

~A4!

Here f a( x̄,v̄,t)2Fa( x̄,v̄)5Fa(x0
E ,v0

E)2Fa( x̄,v̄) where
@x0

E( x̄,v̄),v0
E( x̄,v̄)# are the inverse trajectories~for the spe-

ciesa, with index omitted! associated with the total electri
field E. From the Newton equations it follows immediate
that, for tP(0,d),

ux0
E2 x̄u<duv̄u1

qa

ma
d2uEu, uv0

E2 v̄u<
qa

ma
duEu,

~A5!

whereuEu[supx,tuE(x,t)u. Then, from the mean value theo
rem

u f a~ x̄,v̄,t!2Fa~ x̄,v̄ !u<bx,aS duv̄u1
qa

ma
d2uEu D

1bv,a

qa

ma
duEu, ~A6!

where bh,a[supxP@0,2p#supvPQu(]Fa /]h)(x,v)u, h5x,v.
Hence, the order of magnitude ofRa,k is

uRa,k~ t !u;
kqa

ma
d2uQuuTuuda

AuFbx,aS duQu1
qa

ma
d2uEu D

1bv,a

qa

ma
duEuG , ~A7!

whereuTu[supx,tuT(x,t)u and uda
Au[supx,v,tuda

A(x,v,t)u.
The same procedure applied to the approximate exp

sion in Eq.~7!
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Qa~x,t ![
qa

ma
E

R
dvE

0

t

dtH T
]Fa

]v J
@x

t
A~x,v,t !,vt

A~x,v,t !#

~A8!

leads, for the Fourier coefficients, to

uQa,k~ t !u;
kqa

ma
d2uQuuTuuda

Au. ~A9!

Clearly, for Eq.~7! to be a good approximation to the fu
Vlasov equation,uRau!uQau, or, from Eqs.~A7! and ~A9!,

bx,aduQu1bx,ad2
qa

ma
uEu1bv,ad

qa

ma
uEu!1 ~A10!

(a51,...,NS). Physically,d is the time scale for the decay o
the transientT, whereasbx,auQu, (qa /ma)bx,auEu, and
(qa /ma)bv,auEu measure the various effects that makef a
drift away from the initial conditionFa . In particular,
bx,auQu corresponds to the zero-field advection~in space! of
the spatially nonuniform part of the initial distribution, whic
becomes relevant on the time scaletax,a'1/bx,auQu. The
term (qa /ma)bx,auEu measures the action of the fieldE on
the position of the particles and corresponds to the trapp
time scaletbx,a'Ama /qabx,auEu. Finally, (qa /ma)bv,auEu
expresses the deviation imposed byE on the velocity of the
particles ~i.e., the advection in velocity! on the time scale
tbv,a'ma /qabv,auEu. Defining tax[minatax,a , tbx
[minatbx,a , and tbv[minatbv,a , Eq. ~A10! can be broken
into the three conditions

d!tax , d!tbx , d!tbv ~A11!

for the validity of the transient linearization. They have be
derived fort.d, but the development can be adapted fot
,d. One obtains conditions just like those in Eqs.~A11!, but
with d replaced byt; sincet,d, it follows that Eqs.~A11!
provide a sufficient condition for the accuracy of the tra
sient linearizationat all times. Finally, t trans!tdyn follows by
definingt trans[d andtdyn[min(tax,tbx,tbv).

In practice,tax , tbx , andtbv ~and thustdyn) will usually
be determined by the electrons. Interestingly, the definiti
of the field-effect time scalestbx andtbv include the param-
etersbx,a andbv,a , which depend, respectively, on the sp
tial and velocity gradients of the initial distribution, where
O’Neil’s tb contains the typical wave numberk and therefore
depends only on the spatial gradient. In most physical si
tions,bv,a;1 andbx,a;kuEu; thus, all three time scales o
the right sides of Eqs.~A11! are proportional to 1/uEu.
Hence, in the small-amplitude casetdyn is larger than
O’Neil’s trapping timetb , which is proportional to 1/uEu1/2.

APPENDIX B: VANISHING TIME-ASYMPTOTIC
FIELD SOLUTIONS

To prove thatA[0 is a solution to Eq.~8!, whether or not
it can be reached from a given initial condition, we note th
for A(x,t)[0 the @xt

A ,vt
A# are xt

0(x,v,t)5x2v(t2t),
vt

0(x,v,t)5v, and the solution to Eq.~6! is
02640
g

n

-

s

-

a-

t

f a
T~x,v,t !5Fa~x2vt,v !2

qa

ma
E

0

t

dtH T
]Fa

]v J
@x2v~ t2t!,v#

.

~B1!
Under the assumption thattT(x,t) is integrable at infinity, by
writing the interval of integration as@0,1`! minus @ t,1`)
Eq. ~B1! can be written as

f a
T~x,v,t !5Fa

T~x2vt,v !1ga
T~x,v,t !, ~B2!

wherega
T(x,v,t)→0 uniformly ast→` and

Fa
T~x,v ![Fa~x,v !2

qa

ma
E

0

`

dtH T
]Fa

]v J
@x1vt,v#

.

~B3!

From Eq. ~B2! it follows that, in the time-asymptotic
limit, f a

T is macroscopically equivalent to a spatially unifor
Vlasov equilibrium, in the sense that there is an equilibriu
Fa

T(v) such thatf a
T and Fa

T generate the same macroscop
quantities. To be precise, consider any integral of the fo
*RduG(v,u) f a

T(x,u,t), which could be a charge or curren
density @G(v,u)51,u#, or any higher moment@G(v,u)
5un#, or a filtered distribution function@26#. Substitutingf a

T

from Eq. ~B2! and taking the spatial Fourier transform, it
easy to see that, forkÞ0, *RduG(v,u) f a,k

T (u,t)→0 as t
→` by the Riemann-Lebesgue lemma@becausef a,k

T (u,t)
5Fa,k

T (u)eikut plus terms derived from the transient fun
tionsga , which vanish in the time-asymptotic limit#. Hence,
*RduG(v,u) f a

T(x,u,t)→*RduG(v,u)Fa
T(u) as t→`,

where we have introduced the time-asymptotic equilibriu

Fa
T~v !5Fa,0

T ~v !5Fa~v !

2
qa

ma

1

2p E
2p

1p

dxE
0

`

dtH T
]Fa

]v J
@x1vt,v#

.

~B4!

In particular, the charge density forf a
T on the right side of

Eq. ~8! is now equal to the charge density forFa
T . By defi-

nition, the initial Vlasov equilibriumFa(v) has zero charge
density, as does the other term in Eq.~B4! ~this follows from
using spatial periodicity to eliminate the shiftvt that arises
in the limits of integration indx and an integration by parts!.
Hence,Fa

T(v) is a charge-neutral equilibrium and Eq.~8! is
identically satisfied byA[0.

APPENDIX C: LINEARIZATION OF THE
TIME-ASYMPTOTIC EQUATION

To develop the linearization of the time-asymptotic equ
tion aboutA[0, we substitute into Eq.~5a! for f a

f a~x,v,t !5Fa~x2vt,v !2
qa

ma
E

0

t

dtH A
] f a

]v J
@x2v~ t2t!,v#

2
qa

ma
E

0

t

dtH T
]Fa

]v J
@x2v~ t2t!,v#

, ~C1!

which is obtained by integrating the transiently lineariz
Vlasov equation along straight line trajectories (A[0). The
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first and third terms on the right side generate vanish
quantities by the Riemann-Lebesgue lemma; hence, Eq.~5a!
becomes

Ak~ t !52
2

ik (
a

qa
2

ma
PaE

2p

1p

dx e2 ikxE
R
dv

3E
0

t

dtH A
] f a

]v J
@x2v~ t2t!,v#

. ~C2!

By periodicity, the integrand can be shifted byv(t2t) in the
x variable; then, taking the Bohr transform of both sid
yields

ak,v i
52

2

ik (
a

qa
2

ma
lim

s→`

1

s E
0

s

dt eiv i tE
2p

1p

dxE
R
dv

3E
0

t

dt e2 ikx2 ikv~ t2t!A~x,t!
] f a

]v
~x,v,t!. ~C3!

Integrating by parts int, introducing principal value inte-
grals, and noting the cancellation of the associated half r
dues gives

ak,v i
52

2

k (
a

qa
2

ma
lim

s→`

1

s
PE

R
dv

eiv is

v i2kv E0

s

dt e2 ikv~s2t !

3E
2p

1p

dx e2 ikxA~x,t !
] f a

]v
~x,v,t !

1
2

k (
a

qa
2

ma
lim

s→`

1

s
PE

R
dvE

0

s

dt
eiv i t

v i2kv

3E
2p

1p

dx e2 ikxA~x,t !
] f a

]v
~x,v,t !. ~C4!

The first term on the right side can be simplified by noti
that it contains~except for vanishing terms! the right side of
Eq. ~C1! evaluated att5s. Hence,

ak,v i
52

2

k (
a

qa lim
s→`

1

s
PE

R
dv

eiv is

v i2kv
f a,k~v,s!

1
2

k (
a

qa
2

ma
lim

s→`

1

s
PE

R
dvE

0

s

dt
eiv i t

v i2kv

3E
2p

1p

dx e2 ikxA~x,t !
] f a

]v
~x,v,t !. ~C5!

The first term on the right side is zero, since 1/s multiplies
bounded functions ofs. Finally, another change in integra
tion order yields

ak,v i
5

2

k (
a

qa
2

ma
lim

s→`

1

s E
0

s

dtE
2p

1p

dx e2 ikx1 iv i tA~x,t !

3PE
R
dv

f a,k8

v i2kv
, ~C6!
02640
g

s

i-

which can be linearized aboutA[0 by simply replacing
f a8 (A1T) by its value atA[0. This gives the linearized
time-asymptotic equation

ak,v i
5

2

k (
a

qa
2

ma
lim

s→`

1

s E
0

s

dtE
2p

1p

dx e2 ikx1 iv i tA~x,t !

3PE
R
dv

f a,k
T08

v i2kv
, ~C7!

wheref a
T0 is the distribution function at the critical state, E

~B1! ~with T5T0).
Substitutingf a

T0 from Eq. ~B2! into Eq. ~C7! yields Eq.
~9! as the linearized equation since the term containing
transientga

T0 gives no contribution to the time average a

all the spatial Fourier components ofFa
T0 with kÞ0 generate

oscillatory terms in the principal value integral, which go
zero ast→` by the Riemann-Lebesgue lemma@20#. Thus,
the only nonzero contribution comes from the spatially u
form part of f a

T0 8 , i.e., the time-asymptotic equilibriumFa
T0

in Eq. ~B4!.

APPENDIX D: EXPANSION OF THE TIME-ASYMPTOTIC
EQUATION

The details of the analysis that results in Eq.~24!, the
leading-order expansion of the two-wave time-asympto
equation, Eq.~14!, in terms ofa, are given here.

1. O’Neil terms

We start from the first term on the right side in Eq.~14!
~O’Neil terms!. To calculate the characteristics@x0

A ,v0
A#, fol-

lowing Ref. @15#, we divide the phase plane into two halve
one for each wave mode, and perform a sequence of can
cal transformations that transform the dynamics in each
plane into those for a single sinusoidal wave, which can
calculated in terms of elliptic integrals. Instead of computi
@x0

A ,v0
A# directly, we shall use these canonical transform

tions to change the integration variables, working our w
backward. All such changes of variables will have Jacob
determinants equal to 1~at least to first order ina! because
the corresponding coordinate transformations are~approxi-
mately! canonical, i.e., area preserving. We first consider
half plane v>0 that corresponds to the wave withvp5
1v/k0 . @We shall not explicitly indicate all the infinitesima
transformations in the lower limit of integration inv as the
integration variables are transformed, because in the en
the contributions will combine into integrals on the wholev
axis. We shall simply write a plus sign on top of the integr
tion symbol, to indicate a domain of integration that corr
sponds to a positivev semiaxis in the (x,v) coordinates.#

The first change of variables moves the problem to
wave frame (p5mav, and thea is suppressed!

u5k0x2vt, J5
1

k0
~p2mavp!. ~D1!
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Correspondingly, the ‘‘backward’’ values@xt
A ,vt

A# will be
transformed to@ut

A ,Jt
A#, where

ut
A~u,J,t !5k0xt

A~x,v,t !2vt,

Jt
A~u,J,t !5

ma

k0
@vt

A~x,v,t !2vp# ~D2!

~a suppressed!. Hence, the first term on the right side of E
~14! becomes

8

k0
(
a

qa

ma
lim

s→`

1

s E
0

s

dt cosvtE
2k0p

1k0p

du

3cos~u1vt !E1

dJH FaS vp1
k0

ma
J0

A~u,J,t ! D
1ehaS vp1

k0

ma
J0

A~u,J,t ! D cosu0
A~u,J,t !J , ~D3!

where the shift2vt in the u integration limits has been
eliminated by periodicity.

The second coordinate change is@15#
q.

da

t
ar

02640
ū5u2
qak0a

ma

1

@~k0
2/ma!J12v#2 sin@u12vt#1O~a2!,

J̄5J2
qaa

k0

1

@~k0
2/ma!J12v#

cos@u12vt#1O~a2!.

~D4!

For cosut
A andJt

A , the analog of Eq.~D2! is found by evalu-
ating the inverse equations att5t,

cosut
A5cosūt

A2
qaa

k0ma

1

@2vp1~k0 /ma!J̄t
A#2

3sinūt
A sin@ ūt

A12vt#1O~a2!, ~D5!

Jt
A5 J̄t

A1
qaa

k0
2

1

@2vp1~k0 /ma!J̄t
A#

cos@ ūt
A12vt#1O~a2!.

~D6!

Then Eq.~D3! becomes@with error O(a2)]
8

k0
(
a

qa

ma

lim
s→`

1

s
E

0

s

dt cosvtE
2k0p

1k0p

dūE1

dJ̄ cosS ū1vt1
qaa

k0ma

sin@ ū12vt#

@2vp1~k0 /ma!J̄#2
D

3H Fa~vp1~k0 /ma!J̄0
A!1eha~vp1~k0 /ma!J̄0

A!cosū0
A2

qaea

k0ma

ha~vp1~k0 /ma!J̄0
A!

sin2 ū0
A

@2vp1~k0 /ma!J̄0
A#2

1
qaea

k0ma

dha

dv
~vp1~k0 /ma!J̄0

A!
cos2 ū0

A

@2vp1~k0 /ma!J̄0
A#

1
qaa

k0ma

dFa

dv
~vp1~k0 /ma!J̄0

A!
cosū0

A

@2vp1~k0 /ma!J̄0
A#
J .

~D7!
n

t

Here, (ū0
A ,J̄0

A) ~with subscripts corresponding tot50) have

arguments (ū,J̄,t); we have also ignored the effect of E
~D4! on the limits of the integration in space~since there also
is periodicity in ū).

In ( ū,J̄) the Hamiltonian is@15#

H̄~ J̄,ū ![
k0

2

2ma
J̄21

qaa

k0
cosū5E, ~D8!

which corresponds to particle motion in a single sinusoi
wave with amplitudeA5qaa. When qa,0 this is the
Hamiltonian for a nonlinear pendulum. Whenqa.0 it is the
Hamiltonian for an upside-down pendulum, corresponding
the fact that the positive particles oscillate in the downw
trough of the wave. Clearly, the Hamiltonian withqa.0 is
transformed into the Hamiltonian withqa,0 simply by
shifting the spatial variableū by p. Hence, we shall study
l

o
d

only the caseqa,0, and transformū to ū1p in the qa.0
terms in Eq. ~D7!. For qa,0 the trajectories

@ ū0
A( ū,J̄,t),J̄0

A( ū,J̄,t)# that correspond to the Hamiltonian i
Eq. ~D8! can be obtained explicitly@33# as

ū0
A~ ū,J̄,t !52 amFFS ū

2
UmD 2

t

ktb
,mG , ~D9!

J̄0
A~ ū,J̄,t !5

2ma

k0
2

1

tbk
dnF t

ktb
2FS ū

2
UmD ,mG , ~D10!

whereF(yum) is the incomplete elliptic integral of the firs
kind and

tb5Ama /uqauk0a, m5k25
a

~k0
3/4uqauma!J̄21a sin2 ū/2

.

~D11!
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By definition,k takes the same sign asJ̄. The inverse trajectories depend on the particle species viatb , k, andm; however,
we have suppressed thea indices. Usingū→ ū1p whenqa.0 in Eq. ~D7! yields

8

k0
(
a

saqa

ma

lim
s→`

1

s
E

0

s

dt cosvtE
2k0p

1k0p

dūE1

dJ̄ cosH ū1vt1
saqaa

k0ma

sin@ ū12vt#

@2vp1~k0 /ma!J̄#2J
3H Fa~vp1~k0 /ma!J̄0

A! 1esaha~vp1~k0 /ma!J̄0
A!cosū0

A2
qaea

k0ma

ha~vp1~k0 /ma!J̄0
A!

sin2 ū0
A

@2vp1~k0 /ma!J̄0
A#2

1
qaea

k0ma

dha

dv
~vp1~k0 /ma!J̄0

A!
cos2 ū0

A

@2vp1~k0 /ma!J̄0
A#

1
saqaa

k0ma

dFa

dv
~vp1~k0 /ma!J̄0

A!
cosū0

A

@2vp1~k0 /ma!J̄0
A#
J ,

~D12!
fo

o

i
n

n
rm

ms
wheresa[2qa /uqau mark the terms whose sign changes
qa.0 and the shifted quantities are still denoted byū,ū0

A .
When we substitute Eqs.~D9! and ~D10! into Eq. ~D12! we
obtain a completely explicit expression.

Even though it appears quite complicated, Eq.~D12! can
be simplified by exploiting the time-asymptotic properties
the inverse phase flow@ ū0( ū,J̄,t),J̄0( ū,J̄,t)#. Since the po-
tential well in Eq.~D8! is not harmonic, particles with dif-
ferent energies oscillate at different frequencies and ‘‘m
up’’ the initial distribution. At long times, as filamentatio
grows, we can expect theū- J̄ integration in Eq.~D12! to
average away all the high-frequency terms and leave o
some coarse-grained component. In practice, after perfo
e-
a

02640
r

f

x

ly
-

ing a straightforward expansion of the trigonometric ter
appearing in the first line, Eq.~D12! can be written as a
linear combination of terms of the form

lim
s→`

1

s E
0

s

dt w~ t !E
2k0p

1k0p

dū

3E1

dJ̄K~ ū,J̄!G0@ ū0~ ū,J̄,t !,J̄0~ ū,J̄,t !#,

~D13!

wherew and K are continuous, bounded, and periodic int

and ū, respectively, and
G0~ ū,J̄![Fa~vp1~k0 /ma!J̄!1esaha~vp1~k0 /ma!J̄!cosū2
qaea

k0ma

ha~vp1~k0 /ma!J̄!
sin2 ū

@2vp1~k0 /ma!J̄#2

1
qaea

k0ma

dha

dv
~vp1~k0 /ma!J̄!

cos2 ū

@2vp1~k0 /ma!J̄#
1

saqaa

k0ma

dFa

dv
~vp1~k0 /ma!J̄!

cosū

@2vp1~k0 /ma!J̄#
. ~D14!
-

ua-
Then the following general result applies.
Proposition 1.Given an autonomous, periodic, and int

grable one-degree-of-freedom system with ‘‘inverse char
teristics’’ @ ūt( ū,J̄,t),J̄t( ū,J̄,t)#, and two functionsK andG0
as in Eq.~D13!,

lim
t→`

E
2k0p

1k0p

dūE
V̄

dJ̄K~ ū,J̄!G0@ ū0~ ū,J̄,t !,J̄0~ ū,J̄,t !#

5E
2k0p

1k0p

dūE
V̄

dJ̄K~ ū,J̄!Ḡ0~ ū,J̄!, ~D15!
c-

whereV̄ is an interval inR and Ḡ0( ū,J̄) is the average in
phase space of the functionG0( ū,J̄) along the curves of con
stant energy of the system.

This is shown easily@33# by transforming to action-angle
variables and invoking the Riemann-Lebesgue lemma. Eq
tion ~D15! and Fréchet’s lemma@28# imply that Eq.~D13!
can be rewritten as

E
2k0p

1k0p

dūE1

dJ̄K~ ū,J̄!Ḡ0~ ū,J̄! lim
s→`

1

s E
0

s

dt w~vt !.

~D16!
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Then, tedious manipulations reduce Eq.~D12! to

4

k0
(
a

saqa

ma
E

2k0p

1k0p

dūE1

dJ̄

3H cosū2
saqaa

2k0ma

1

@2vp1~k0 /ma!J̄#2J Ḡ0~ ū,J̄!.

~D17!

The terms in Eq.~D17! that depend on the asymptot
field amplitudea only through the averaging process are

4

k0
(
a

saqa

ma
E

2k0p

1k0p

dūE1

dJ̄ cosūH̄0~ ū,J̄!, ~D18!

whereH̄0( ū,J̄) is obtained by averaging

H0~ ū,J̄![FaS vp1
k0

ma
J̄D1esahaS vp1

k0

ma
J̄D cosū

~D19!

on the pendulum energy levels. These expressions co
spond to particle dynamicsin a single sinusoidal wave, while
the other terms in Eq.~D17!, temporarily set aside, represe
the effects of the second wave, with phase velocity2v/k0 .
To compute the phase-plane averages in Eq.~D18!, we trans-
form from (ū,J̄) to the action-angle variables (ũ,J̃) for the
nonlinear pendulum, where the averaging can be perform
more easily. Form,1 ~untrapped particles!, we definej

[ū/2; then ũ5@p/K(m)#F(jum) and J̃5(4/p)(ma /k2)
3(1/tbk)E(m), where K and E are the complete elliptic
integrals of the first and second kinds, respectively. Hen

j5amF ũK~m!

p
,mG , cosū5cos 2j5122 sn2F ũK~m!

p
,mG

~D20!

and

J̄5
2ma

k0
2 j̇ 5

2ma

k0
2

1

tbk
A12k2 sin2 j

5
2ma

k0
2

1

tbk
dnF ũK~m!

p
,mG ~D21!

where m, k, and tb were defined in Eq.~D11! and j̇
5(1/tbk)A12k2 sin2 j follows from the conservation of en
ergy. Then,

H̄0~ ū,J̄!5
1

2p E
0

2p

dũH FaS vp1
2

k0

1

tbk
dn@ ũK~m!/p,m# D

1esahaS vp1
2

k0

1

tbk
dn@ ũK~m!/p,m# D

3$122 sn2@ ũK~m!/p,m#%J . ~D22!
02640
re-

ed

,

For m.1 we definez such that sinz̄5k sinj; then the
action-angle variables are@33# ũ5@p/2K(1/m)#F(zu1/m),
J̃5(8/p)(ma /tbk2)@E(1/m)2(121/m)K(1/m)#. Hence,

z5amFKS 1

mD 2ũ

p
,

1

m
G ,

cosū5cos 2j512
2

k2 sin2 z512
2

k2 sn2FKS 1

mD 2ũ

p
,

1

m
G

~D23!

and

J̄5
2ma

k0
2

1

tbk
A12k2 sin2 j

5
2ma

k0
2

1

tbk
cosz

5
2ma

k0
2

1

tbk
cnFKS 1

mD 2ũ

p
,

1

m
G . ~D24!

Then

H̄0~ ū,J̄!5
1

2p E
0

2p

dũH FaS vp1
2

k0

1

tbk
cnFKS 1

mD 2ũ

p
,

1

m
G D

1esahaS vp1
2

k0

1

tbk
cnFKS 1

mD 2ũ

p
,

1

m
G D

3S 12
2

k2 sn2FKS 1

mD 2ũ

p
,

1

m
G D J . ~D25!

Rescaling the integration variables in Eqs.~D22! and ~D25!
and substituting into Eq.~D18! yields

4

k0
(
a

saqa

ma
E

2k0p

1k0p

dūE
m~ J̄,ū !,1

1

dJ̄ cosū

3
1

2K~m!
E

0

2K~m!

dzH FaS vp1
2

k0

1

tbk
dn@z,m# D

1esahaS vp1
2

k0

1

tbk
dn@z,m# D ~122 sn2@z,m# !J

~D26!

for m,1, and form.1

4

k0
(
a

saqa

ma
E

2k0p

1k0p

dūE
m~ J̄,ū !.1

1

dJ̄ cosū

3
1

4K~1/m!
E

0

4K~1/m!

dzH FaS vp1
2

k0

1

tbk
cnFz,

1

mG D
1esahaS vp1

2

k0

1

tbk
cmFz,

1

mG D S 12
2

k2 sn2Fz,
1

mG D J .

~D27!
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To expand these quantities in powers ofa, which appears
in tb , k, and m @Eq. ~D11!#, we shall break the velocity
integrals into regions that correspond to different types
wave-particle interactions, distinguishing between reson
and nonresonant particles based on the size of the coeffi
(tbk)21 in the arguments ofFa and ha . Here 1/tb is of
orderAa, whereas 1/uku can vary from 0 at the bottom of th
wave’s potential well to 1 on the separatrix tòfar from the
wave in the phase plane. For 1/uku&1, we perform ‘‘reso-
nant’’ expansions ofFa and ha around vp ~resonant par-
ticles!. But when 1/uku becomes larger, the coefficien
(tbk)21 is no longer small and we must find a way to e
pand the functions around the free-streaming particle ve
ity instead ofvp . This will be the case of nonresonant pa
ticles.

a. Resonant particles

The resonant region will be further divided into two su
regions, corresponding to the untrapped (m,1) and trapped
(m.1) resonant particles.

a1. Resonant untrapped particles(m,1). We shall con-
sider as resonant the phase region such that 1.uku.a1/4,
i.e., 1/utbku,a1/4. Then Taylor expandingFa andha about
vp in Eq. ~D26! gives
02640
f
nt
nt

c-

4

k0
(
a

saqa

ma
E

2k0p

1k0p

dūE
I 1

dJ̄ cosū
1

2K~m!
E

0

2K~m!

dz

3(
j 50

` H F 2

k0

1

tbkG j 1

j !

djFa

dv j ~vp!dnj@z,m#

1esaF 2

k0

1

tbkG j 1

j !

djha

dv j ~vp!dnj@z,m#

3~122 sn2@z,m# !J , ~D28!

where

I 1[S 2a1/4,2
2ma

k0
2tb

cos
ū

2D øS 1
2ma

k0
2tb

cos
ū

2
,1a1/4D .

All terms with j odd are odd functions ofJ̄, since they are
odd in k, andk has the same sign asJ̄. Hence, sinceI 1 is
symmetric, these terms vanish. Forn even both theAn(m)
and theBn(m) can be calculated via standard recursive f
mulas@33#. In Eq. ~D28! the small parametera appears not
only in 1/tb but also ink and m ~in the producttb

2J̄2). To
deal with this we rescaleJ̄ by 2ma /k0

2tb ~and still useJ̄, k,
andm for the transformed quantities! and arrive@33# at the
leading-order terms in Eq.~D28! as
that

gion,
8

k0
3 (

a
saqaE

2k0p

1k0p

dūE
Ĩ 1

dJ̄ cosūH 2

k0
2

1

k2tb
3

E~m!

K~m!

d2Fa

dv2 ~vp!1
esa

tb
F11

2

m S E~m!

K~m!
21D Gha~vp!

1esa

2

k0
2

1

k2tb
3

1

3 F11S 2

m
21D S E~m!

K~m!
21D G d2ha

dv2 ~vp!J , ~D29!

where E(m) is the complete elliptic integral of the second kind, nowm[k25@ J̄21sin2(ū/2)#21 and Ĩ 1[„2a21/4,
2cos(ū/2)…ø„1cos(ū/2),1a21/4

…. Now, k andm do not depend ona, and the integrand in Eq.~D26! has been written as a
series expansion in powers oftb

21, i.e., powers ofa1/2.

The only inconvenience is the powersa21/4 that appear inĨ 1 . Let us add and subtract two terms and add a term
integrates to zero inū to rewrite Eq.~D29! as

8

k0
3 (

a
saqaE

2k0p

1k0p

dūE
Ĩ 1

dJ̄ cosūH 1

k0
2

1

tb
3 F11

2

m S E~m!

K~m!
21D G d2Fa

dv2 ~vp!1
1

k0
2

1

tb
3 S 2

m
21D d2Fa

dv2 ~vp!

1
esa

tb
F11

2

m S E~m!

K~m!
21D Gha~vp!1esa

1

k0
2

1

tb
3 F 2

3m F11S 2

m
21D S E~m!

K~m!
21D G2

1

4G d2ha

dv2 ~vp!J . ~D30!

All the functions in the square brackets are integrable asuJ̄u→`, i.e., umu→0, sincem; J̄22 @see@34#, 17.3.11 and 17.3.12#;
in the last term integrability was obtained by subtracting the spatially uniform terme @1/(4k0

2tb
3)#(d2ha /dv2)(vp), which

vanishes under theū integration#. These terms will combine with corresponding terms from the nonresonant particle re
allowing us to extend the domain of integration for these functions fromĨ 1 to Ī 1[„2`,2cos(ū/2)…ø„1cos(ū/2),1`…. For
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the remaining term in Eq.~D30!, if we rescaleJ̄ back to its original definition and substitute the original expression form from

Eq. ~D11!, the part depending onJ̄ cancels under theū integration and~noting thatsaqauqau52qa
2) we have

2a
4

k0
2 (a

qa
2

ma
2 E

2k0p

1k0p

dūE
I 1

dJ̄ cosūS 2 sin2
ū

2
21D d2Fa

dv2
~vp!

5a
4p

k0
(
a

qa
2

ma
2 EI 1

dJ̄
d2Fa

dv2
~vp!5a

4p

k0
2 (

a

qa
2

ma

PE
I 1

dJ̄
1

J̄
H dFa

dv
~vp!1

d2Fa

dv2
~vp!

k0

ma

J̄1
1

2

d3Fa

dv3
~vp!F k0

ma

J̄G 2J
5a

4p

k0
2 (

a

qa
2

ma

PE
I 1

dJ̄
1

J̄
Fa8 S vp1

k0

ma

J̄D 1O~a7/4!, ~D31!
ed

m
e

.

s

e

last

,

re-
he
te-

s-
pan-

us

to

de
where the first and third terms in the braces~each of which
integrates to zero! have been added to form the truncat
Taylor series ofFa8 (vp1(k0 /ma) J̄). The last line yields, at
leading order, the Vlasov dispersion integral~in the wave
frame! restricted to the resonant region. As such, it will co
bine naturally with corresponding integrals from the oth
regions in the phase plane.

a2. Trapped particles(m.1). All the trapped particles
are resonant and for themu1/tbku!1 always. Thus, we can
expandFa andha in Eq. ~D27! aboutvp , just as in case a1
The analog of Eq.~D28! then is

4

k0
(
a

saqa

ma
E

2k0p

1k0p

dũE
I 2

dJ̄
cosū

4K~1/m!
E

0

4K~1/m!

dz

3(
j 50

` H F 2

k0

1

tbkG j 1

j !

djFa

dv j ~vp!cnjFz,
1

mG
1esaF 2

k0

1

tbkG j 1

j !

djha

dv j ~vp!cnjFz,
1

mG
3S 12

2

k2 sn2Fz,
1

mG D J , ~D32!

where I 2[„2(2ma /k0
2tb)cos(ū/2),1(2ma /k0

2tb)cos(ū/2)….
As in case a1, all the terms with oddj vanish, and the other
can be calculated following the same steps. RescalingJ̄ by
2ma /k0

2tb , redefiningm as in case a1, and introducing th

modified domainĨ 2[„2cos(ū/2),1cos(ū/2)… yields at lead-
ing order

8

k0
3 (

a
saqaE

2k0p

1k0p

dūE
Ĩ 2

dJ̄ cosūH 2

k0
2

1

tb
3

3FK~1/m!

K~1/m!
2

m21

m G d2Fa

dv2 ~vp!1
esa

tb
F2

E~1/m!

K~1/m!
21G

3ha~vp!1esa

1

k0
2

1

tb
3 H 2

3 F 1

m
1S 2

m
21D S E~1/m!

K~1/m!
21D G
02640
-
r

2
1

4J d2ha

dv2 ~vp!J , ~D33!

where we have introduced the same constant factor in the
term that was added to the corresponding term in Eq.~D30!

to make it integrable inJ̄. This spatially uniform correction
of course, vanishes under theū integration. In Eq.~D34! we
can write

2

k0
2

1

tb
3 FE~1/m!

K~1/m!
2

m21

m G
5

1

k0
2

1

tb
3 F2

E~1/m!

K~1/m!
21G1

1

k0
2

1

tb
3 S 2

m
21D ,

~D34!

where the first term connects continuously with the cor
sponding quantity in Eq.~D30!, and the second generates t
trapped particle contribution to the Vlasov dispersion in
gral @as in Eq.~D31!#.

b. Nonresonant particles

We also must consider the caseuku,a1/4, i.e., 1/utbku
.a1/4. Since 1/utbku can become arbitrarily large as the di
tance from the wave in phase space increases, Taylor ex
sions aroundvp are not appropriate. Instead, sincem5k2

,Aa, we expand the elliptic function dn, which enables
to expandFa andha around the free-streaming velocityvp

1(k0 /ma) J̄ @33# to obtain

a
4p

k0
2 (

a

qa
2

ma
E

I 3

1

dJ̄
1

J̄

dFa

dv
S vp1

k0

ma

J̄D ~D35!

as the leading-order approximation to Eq.~D26!. Equation
~D35! is the contribution from the nonresonant particles
the Vlasov dispersion integral.

Combining Eqs. ~D30!, ~D34!, and ~D35! yields the
leading-order terms in the expansion of the single-mo
O’Neil terms:
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2a3/2s1(
a

F uqau5

k0
5ma

3G 1/2
d2Fa

dv2
~vp!

1ea1/2s1(
a

qaF uqau

k0
3ma

G 1/2

ha~vp!

1a
4p

k0
2 (

a

qa
2

ma
E1

dJ̄
1

J̄

dFa

dv
S vp1

k0

ma

J̄D
1ea3/2s2(

a
qaF uqau3

k0
5ma

3G 1/2
d2ha

dv2
~vp!, ~D36!

wheresn[8*2p
1pdū*RdJ̄ cosūgn(ū,J̄) and the integrals inū

over @2k0p,1k0p# have been written ask0 times integrals
over @2p,1p#. The functionsg1 andg2 are
pe
an

t
g

s
e
lf-
m

n

02640
g1~ ū,J̄![H 11
2

m S E~m!

K~m!
21D , m,1,

2
E~1/m!

K~1/m!
21, m.1,

~D37!

g2~ ū,J̄![H 2

3m F11S 2

m
21D S E~m!

K~m!
21D G2

1

4
, m,1,

2

3m F11~22m!S E~1/m!

K~1/m!
21D G2

1

4
, m.1,

~D38!

and m[k25@ J̄21sin2(ū/2)#21. Numerical integration
yields s15832.58520.67 ands25830.06650.53.

We still must consider the terms in Eq.~D17! that corre-
spond to the interaction between the wave under consi
ation and the ‘‘other’’ wave:
4

k0
(
a

saqa

ma
E

2k0p

1k0p

dūE1

dJ̄H cosūF saqaa

k0ma

dFa

dv
S vp1

k0

ma

J̄D cosū

@2vp1~k0 /ma!J̄#

1
qaea

k0ma

dha

dv
S vp1

k0

ma

J̄D cos2 ū

@2vp1~k0 /ma!J̄#
2

qaea

k0ma

haS vp1
k0

ma

J̄D sin2 ū

@2vp1~k0 /ma!J̄#2
G

2
saqaa

2k0ma

1

@2vp1~k0 /ma!J̄#2
FFaS vp1

k0

ma

J̄D 1esahaS vp1
k0

ma

J̄D cosūG1O~a2!, ~D39!
e

y
.

where the terms with overbars must be averaged on the
dulum energy levels. This averaging can be carried out,
the resulting quantities expanded in powers ofa, using the
above techniques, which entails some tedious algebra bu
new ideas. Actually, we need to compute only terms throu
ordera3/2, to be consistent with Eq.~D18!; we obtain

a3/2
s1

2vp
(
a

F uqau5

k0
5ma

3G 1/2
dFa

dv
~vp!

1ea3/2
s2

2vp
2 (

a
qaF uqau3

k0
5ma

3G 1/2Fha~vp!12vp

dha

dv
~vp!G

2a
4p

k0
(
a

qa
2

ma
2 E1

dJ̄
Fa~vp1~k0 /ma!J̄!

@2vp1~k0 /ma!J̄#2
. ~D40!

Equations~D36! and ~D40! provide the leading-order term
in the expansion of Eq.~D17! in the upper half plane. Sinc
the initial condition is reflection symmetric, the lower ha
plane contribution will be identical. Thus, the O’Neil ter
becomes Eq.~16!, where the Vlasov dispersion term
K0(k0 ,v) is obtained by transforming the integratio
n-
d

no
h

variable J̄ back to v, integrating by parts, and using th
symmetry ofFa(v).

2. Landau terms

SubstitutingT(x,t)5(n51
` Tnk0

(t)sinnk0x into the second
term on the right side in Eq.~14! ~Landau terms! and trans-
forming to the wave frame via Eqs.~D1! and ~D2! gives

8

k0
(
a

qa
2

ma
2 lim

s→`

1

s E
0

s

dt cosvtE
2k0p

1k0p

du cos~u1vt !

3E1

dJE
0

t

dt(
n

Tnk0
~t!sinn@ut

A~u,J,t !1vt#

3H dFa

dv S vp1
k0

m
Jt

A~u,J,t ! D
1e

dha

dv S vp1
k0

ma
Jt

A~u,J,t ! D cos@ut
A~u,J,t !1vt#J ,

~D41!

where2vt in theu integration limits has been eliminated b
periodicity. Then, using Eq.~D4!, the inverse relations Eqs
~D5! and ~D6!, and ū→ ū1p when qa.0, Eq. ~D41! be-
comes, with orderO(a2) error,
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8

k0
(
a

qa
2

ma
2

lim
s→`

1

s
E

0

s

dt cosvtE
2k0p

1k0p

dūE1

dJ̄ cosS ū1vt1
saqaa

k0ma

sin@ ū12vt#

@2vp1~k0 /ma!J̄#2
D E

0

t

dt(
n

Tnk0
~t!sa,n

3F sinn~ ūt
A1vt!1n

saqaa

k0ma

sin~ ūt
A12vt!cosn~ ūt

A1vt!

@2vp1~k0 /ma!J̄t
A#2 G H dFa

dv S vp1
k0

ma
J̄t

AD1esa

dha

dv S vp1
k0

ma
J̄t

AD
3cos~ ūt

A1vt!1
saqaa

k0ma

d2Fa

dv2 S vp1
k0

ma
J̄t

AD cos~ ūt
A12vt!

@2vp1~k0 /ma!J̄t
A#

1
eqaa

k0ma

d2ha

dv2 S vp1
k0

ma
J̄t

AD
3

cos~ ūt
A12vt!cos~ ūt

A1vt!

@2vp1~k0 /ma!J̄t
A#

2
eqaa

k0ma

dha

dv S vp1
k0

ma
J̄t

AD sin~ ūt
A12vt!sin~ ūt

A1vt!

@2vp1~k0 /ma!J̄t
A#2 J , ~D42!

wheresa,n is sa for n even and unity forn odd. Since the variables with overbars satisfy Eq.~D8!, the@ ūt
A( ū,J̄,t),J̄t

A( ū,J̄,t)#
in Eq. ~D42! are easily obtained in terms of elliptic functions.

A straightforward extension@33# of the arguments that led from Eq.~D12! to Eq. ~D17! shows that Eq.~D42! can be
rewritten as

4

k0
(
a

qa
2

ma
2 E

2k0p

1k0p

dūE1

dJ̄H cosū2
saqaa

2k0ma

1

@2vp1~k0 /ma!J̄#2J (
n

Ḡ0,n~ ū,J̄!, ~D43!

where theḠ0,n( ū,J̄) are obtained trivially~but tediously! by applying standard sum formulas to the trigonometric functions

Tnk0
~t!sa,nF sinn~ ū1vt!1n

saqaa

k0ma

sin~ ū12vt!cosn~ ū1vt!

@2vp1~k0 /ma!J̄#2 G H dFa

dv
S vp1

k0

ma

J̄D 1esa

dha

dv
S vp1

k0

ma

J̄D cos~ ū1vt!

1
saqaa

k0ma

d2Fa

dv2 S vp1
k0

ma

J̄D cos~ ū12vt!

@2vp1~k0 /ma!J̄#
1

eqaa

k0ma

d2ha

dv2 S vp1
k0

ma

J̄D cos~ ū12vt!cos~ ū1vt!

@2vp1~k0 /ma!J̄#

2
eqaa

k0ma

dha

dv
S vp1

k0

ma

J̄D sin~ ū12vt!sin~ ū1vt!

@2vp1~k0 /ma!J̄#2 J ~D44!

and then~a! integrating the factors depending ont from zero to infinity, and~b! averaging the terms depending on (ū,J̄) on
the energy levels of the pendulum.

In Eq. ~D43! the single-mode terms, i.e., the terms that do not have an explicit dependence ona coming from multiple-mode
effects, are given by

4

k0
(
a

qa
2

ma
2 E

2k0p

1k0p

dūE1

dJ̄ cosū(
n

H̄0,n~ ū,J̄!, ~D45!

where theH̄0,n( ū,J̄) are obtained from the terms

Tnk0
~t!sa,n sinn~ ū1vt!H dFa

dv S vp1
k0

ma
J̄D1esa

dha

dv S vp1
k0

ma
J̄D cos~ ū1vt!J ~D46!

via the procedure described above. Standard trigonometric formulas~andsa,n115sasa,n) lead to

H0,n~ ū,J̄![sa,n@Cn,n sinnū1Sn,n cosnu#
dFa

dv S vp1
k0

ma
J̄D1sa,n11

e

2
@Cn,n21 sin~n21!ū1Sn,n21 cos~n21!ū

1Cn,n11 sin~n11!ū1Sn,n11 cos~n11!ū#
dha

dv S vp1
k0

ma
J̄D , ~D47!
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where Cn, j[*0
`dt Tnk0

(t)cosjvt and Sn, j[*0
`dt Tnk0

(t)sin jvt. For reference in Appendix E, these coefficients can

expressed in terms of the Laplace transformT̃n(p) of Tn(t) as

Cn, j5
1

2
@ T̃nk0

~2 i j v!1T̃nk0
~ i j v!#, Sn, j5

1

2i
@ T̃nk0

~2 i j v!2T̃nk0
~ i j v!#. ~D48!

Now, eachH0,n must be averaged on the energy levels of the nonlinear pendulum, via the techniques above. F
trigonometric functions ofū are expressed in terms of sinj and cosj, wherej[ū/2: sinnū5Pn

S(sinj,cosj) and cosnū
5Pn

C(sinj,cosj), wherePn
S andPn

C are (n11)th degree polynomials. Then Eq.~D45! becomes

4

k0
(
a

qa
2

ma
2 E

2k0p

1k0p

dūE
m~ J̄,ū !,1

1

dJ̄ cosū
1

2K~m!
E

0

2K~m!

dz(
n

sa,n@Cn,nPn
S~sn,cn!1Sn,nPn

C~sn,cn!#

3
dFa

dv S vp1
2

k0

1

tbk
dnD1sa,n11

e

2
$Cn,n21Pn21

S ~sn,cn!1Sn,n21Pn21
C ~sn,cn!1Cn,n11Pn11

S ~sn,cn!

1Sn,n11Pn11
C ~sn,cn!%

dha

dv S vp1
2

k0

1

tbk
dnD ~D49!

for m,1, where the elliptic functions sn, cn, and dn are understood to take the arguments@z,m#. Similarly, we find

4

k0
(
a

qa
2

ma
2 E

2k0p

1k0p

dūE
m~ J̄,ū !.1

1

dJ̄ cosū
1

4K~1/m!
E

0

4K~1/m!

dz(
n

sa,n@Cn,nPn
S~k21sn,dn!1Sn,nPn

C~k21sn,dn!#

3
dFa

dv S vp1
2

k0

1

tbk
cnD1sa11,n

e

2
$Cn,n21Pn21

S ~k21sn,dn!1Sn,n21Pn21
C ~k21sn,dn!1Cn,n11Pn11

S ~k21sn,dn!

1Sn,n11Pn11
C ~k21sn,dn!%

dha

dv S vp1
2

k0

1

tbk
cnD ~D50!

for m.1, where now the elliptic functions take the arguments@z,1/m#.
These expressions have the same general structure as Eqs.~D26! and~D27! and can be similarly expanded. In the resona

region we simply expanddFa /dv anddha /dv in Taylor series aboutvp , eliminate the odd terms inJ̄, and rescaleJ̄ to obtain

8

k0
3 (

a

qa
2

ma
E

2k0p

1k0p

dūE
Ĩ 1ø Ĩ 2

dJ̄ tb
21 cosū(

j 50

` H F 2

k0

1

tbkG2 j Ã2 j~m!

~2 j !!

d2 j 11Fa

dv2 j 11 ~vp!1
e

2 F 2

k0

1

tbkG2 j B̃2 j~m!

~2 j !!

d2 j 11ha

dv2 j 11 ~vp!J ,

~D51!

where Ĩ 1 , Ĩ 2 , andm are defined above, and

Ãl~m!55
1

2K~m!
E

0

2K~m!

dzdnl@z,m#(
n

sa,nSn,nPn
C~sn@z,m#,cn@z,m# !, m,1,

1

4K~1/m!
E

0

4K~1/m!

dzcnlFz,
1

mG(
n

sa,nSn,nPn
CS 1

k
snFz,

1

mG ,dnFz,
1

mG D , m.1,

~D52!

B̃l~m!55
1

2K~m!
E

0

2K~m!

dzdnl@z,m#(
n

sa,n11$Sn,n21Pn21
C ~sn@z,m#,cn@z,m# !

1Sn,n11Pn11
C ~sn@z,m#,cn@z,m# !%, m,1,

1

4K~1/m!
E

0

4K~1/m!

dzcnlFz,
1

mG(
n

sa,n11H Sn,n21Pn21
C S k21snFz,

1

mG ,dnFz,
1

mG D
1Sn,n11Pn11

C S k21snFz,
1

mG ,dnFz,
1

mG D J , m.1.

~D53!
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Here we have used the fact that thez integrals containing
Pn

S are zero, as follows from the symmetries of the ellip
functions ~see@34#, Fig. 16.1!. Indeed,Pn

S and Pn
C are, re-

spectively, odd and even functions of each of their ar
ments, as can be seen by using the standard trigonom
multiple-angle formulas and mathematical induction. In pr
ciple, the z integrals can be computed analytically by t
methods introduced above; in practice, asn grows this be-
comes very burdensome. Fortunately, in many conc
cases, e.g., those discussed in Sec. IV, only very few sp
Fourier modesTn are non-negligible. As above@see the com-
ments that follow Eq.~D30!#, the J̄ integration in Eq.~D51!
is extended toR by combining the appropriate resonant a
nonresonant quantities, after eliminating from the reson
terms certain spatially uniform quantities that are not in
grable at infinity inJ̄ but vanish under theū integration.

In the nonresonant region Eq.~D49! is expanded abou
the free-streaming particle trajectories, exactly as for the
responding O’Neil terms. However, here the Landau ter
give no contribution at leading order@33#. Hence, the
leading-order single-mode Landau terms from Eq.~D51! are

a1/2(
a

F uqau5

k0
3ma

3 G1/2Fr1~T!
dFa

dv
~vp!1

e

2
r2~T!

dha

dv
~vp!G

1a3/2(
a

F uqau7

k0
5ma

5 G1/2F2r3~T!
d3Fa

dv3 ~vp!

1er4~T!
d3ha

dv3 ~vp!G , ~D54!
02640
-
tric
-

te
ial

nt
-

r-
s

where

r i~T![8E
2p

1p

dūE dJ̄ cosū Ri~m! ~D55!

and theRi(m), i 51,...,4, are, respectively,Ã0(m), B̃0(m),

Ã2(m)/m, and B̃2(m)/m. The functional dependence ofr i

on the fieldT has been indicated explicitly, andT[0 implies

Cn, j5Sn, j5Ãl5B̃l50, so thatr i(0)50, i 51,...,4.
The same methods can be used to compute the mult

mode effects in Eq.~D43!. The result to leading order is@33#

2a3/2(
a

F uqau7

k0
5ma

5 G1/2Fl1~T!

8vp
2

dFa

dv
~vp!1

l2~T!

4vp

d2Fa

dv2 ~vp!

1
el3~T!

16vp
2

dha

dv
~vp!1

el4~T!

8vp

d2ha

dv2 ~vp!G , ~D56!

where

l i~T![8E
2p

1p

dūE
R
dJ̄ cosūM̃ i~m!, ~D57!
M̃ i~m![5
1

2K~m!
E

0

2K~m!

dz(
n

M i ,n~sn@z,m#,cn@z,m# !, m,1,

1

4K~1/m!
E

0

4K~1/m!

dz(
n

Mi ,n~k21sn@z,m#,dn@z,m# !, m.1,

~D58!
l-
ven
and

M1,n[sa,n@Cn,n12Pn11
S 1Sn,n12Pn11

C 2Cn,n22Pn21
S

2Sn,n22Pn21
C #, ~D59a!

M2,n[sa,n@Cn,n12Pn11
S 1Sn,n12Pn11

C 1Cn,n22Pn21
S

1Sn,n22Pn21
C #, ~D59b!

M3,n[sa,n11@~n11!Cn,n13Pn12
S 1~n11!Sn,n13Pn12

C

2~n21!Cn,n23Pn22
S 2~n21!Sn,n23Pn22

C

1~n21!~Cn,n11Pn
S1Sn,n11Pn

C!
2~n11!~Cn,n21Pn
S1Sn,n21Pn

C!#, ~D59c!

M4,n[sa,n11@Cn,n23Pn22
S 1Sn,n23Pn22

C 1Cn,n13Pn12
S

1Sn,n13Pn12
C 1~Cn,n111Cn,n21!Pn

S

1~Sn,n111Sn,n21!Pn
C#. ~D59d!

Equations~D54! and~D56! can be summed and extended~by
symmetry! to the other half phase plane, yielding the tota
Landau contribution to the nonlinear Poisson equation gi
in Eq. ~21!.
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APPENDIX E: TRANSIENT FIELD EXPANSIONS

Here we present the more tedious calculations needed
the transient analysis in Sec. IV. Substituting Eq.~7! into Eq.
~5b! and Fourier and Laplace transforming gives

T̃k~p!5
4

k (
a

qaE
0

`

dt e2pt~ I 2Pa!E
2p

1p

dx coskx

3E
R
dvFa„x0

A~x,v,t !,v0
A~x,v,t !…

2
4

k (
a

qa
2

ma
E

0

`

dt e2pt~ I 2Pa!E
2p

1p

dx coskx
e

02640
or
3E

R
dvE

0

t

dtH T
]Fa

]v J
@x

t
A~x,v,t !,vt

A~x,v,t !#

, ~E1!

where k5 lk0 , l 51,2,...,Fa(x,v)5Fa(v)1eha(v)cosk0x,
andA is given by Eq.~30!. It is assumed thatTk and the right
side of Eq.~5b! are integrable. To obtain a more explic
expression, we apply the procedure developed for the ti
asymptotic equation to the two integral terms on the rig
side. We carry out the same sequence of transformation
the integration variables that led to Eqs.~D17! and ~D43!,
with k0 in Eq. ~D1! replaced bykf . The result is
T̃k~p!5
4

k (
a

qa

ma
E

0

`

dt e2pt~ I 2Pa!E
2kfp

1kfp

dūE1

dJ̄cos
k

kf
S ū1vt1

qaa

kfma

sin@ ū12vt#

@2vp1~k0 /ma!J̄#2D
3H FFa~w0

A!1eha~w0
A!cos

k0

kf
ū0

A1
qaa

kfma
S Fa8 ~w0

A!cosū0
A

@vp1w0
A#

2e
ha~w0

A!sinū0
A sin@~k0 /kf !ū0

A#

@vp1w0
A#2

1e
ha8 ~w0

A!cosū0
A cos@~k0 /kf !ū0

A#

@vp1w0
A#

D G2E
0

t

dt(
n

Tnk0
~t!S sin

nk0

kf
~ ūt

A1vt!

1nk0

qaa

kf
2ma

sin~ ūt
A12vt!cos@~nk0 /kf !~ ūt

A1vt!#

@vp1wt
A#2 D FdFa

dv
~wt

A!1e
dha

dv
~wt

A!cos
k0

kf
~ ūt

A1vt!

1
qaa

kfma
S Fa9 ~vt

A!cos~ ūt
A12vt!

@vp1wt
A#

2e
ha8 ~wt

A!sin~ ūt
A12vt!sin@~k0 /kf !~ ūt

A1vt!#

@vp1wt
A#2

1e
ha9 ~wt

A!cos~ ūt
A12vt!cos@~k0 /kf !~ ūt

A1vt!#

@vp1wt
A#

D G J
1~corresponding terms from the other half phase plane!, ~E2!
on
-
t

wherewt
A( ū,J̄,t)[vp1(kf /ma) J̄t

A( ū,J̄,t) and

ūt
A~ ū,J̄,t !522 amF t2t

ktb
2FS ū

2
UmD ,mG , ~E3!

J̄t
A~ ū,J̄,t !5

2ma

kf
2

1

tbk
dnF t2t

ktb
2FS ū

2
UmD ,mG . ~E4!

The arguments of the trigonometric functions in Eq.~E2!

must be corrected to include a shift ofp in ū and ūt
A when

qa.0. These corrections will be introduced in th
asymptotic expansions of the various terms in Eq.~E2! in
powers ofDe. We now substitute the perturbative expansi
for T, Eq. ~31!, into Eq. ~E2! and solve the resulting hierar
chy equations for theT(k)(x,t). We illustrate the simples
situation, when the time-asymptotic field is zero.

1. Transient expansion alongaÄ0

Along the basic brancha50, the equation forT̃(0)(p) can
be obtained by settinga50 in Eq.~E2! and noting from Eq.
~E3! that ūt

0( ū,J̄,t)5 ū2(kf
2/ma) J̄(t2t) and J̄t

0( ū,J̄,t)5 J̄,
where the superscripts correspond toA[0. We find
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T̃k
~0!~p!5

4

k (
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qa

ma
E

0

`

dt e2ptE
2kfp

1kfp

dūE1

dJ̃ cos
k

kf
~ ū1vt !FFaS vp1

kf

ma
J̄D1e0haS vp1
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ma
J̄D cos

k0

kf
S ū2

kf
2
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JtD G

2
4

k (
a

qa
2

ma
2 E

0

`

dt e2ptE
2kfp

1kfp

dūE1

dJ̄ cos
k

kf
~ ū1vt !E

0

t

dt(
n

Tnk0

~0! ~t !sin
nk0

kf
F ū2

kf
2

ma
J~ t2t!1vtG

3H dFa

dv S vp1
kf

ma
J̄D1e0

dha

dv S vp1
kf

ma
J̄D cos

k0

kf
F ū2

kf
2

ma
J~ t2t!1vtG J

1~corresponding terms from the other half phase plane!. ~E5!

The projectorI 2Pa in Eq. ~E2! becomes unnecessary in Eq.~E5! because all the time-asymptotic parts vanish fora50. Also,
no modifications are necessary in Eq.~E5! for qa.0, since the straight line trajectoriesūt

0 and J̄t
0 do not depend on the sig

of qa . Carrying out theū integrations yields

T̃k
~0!~p!5dk,k0

e0

4pkf

k (
a

qa

ma
E

0

`

dt e2ptE1

dJ̄ coskS vpt1
kf

ma
J̄t DhaS vp1

kf

ma
J̄D2

4pkf

k (
a

qa
2

ma
2 E

0

`

dt e2pt

3E1

dJ̄E
0

t

dtH Tk
~0!~t !

dFa

dv S vp1
kf

ma
J̄D1

e0

2
@Tk1k0

~0! ~t !1Tk2k0

~0! ~t !#haS vp1
kf

ma
J̄D J sinkF kf

ma
J~ t2t!1vp~ t2t!G

1~corresponding terms from the other half phase plane!. ~E6!

Transforming back tov5vp1(kf /ma) J̄, calculating the Laplace transform, and carrying out an identical calculation in
other half phase plane gives

T̃k
~0!~p!5dk,k0

e0

4p

k (
a

qaE
R
dv

pha~v !

p21k2v22
4p

k
T̃k

~0!~p!(
a

qa
2

ma
E

R
dv

kvFa8 ~v !

p21k2v2

2
e0

2

4p

k
@Tk1k0

~0! ~t !1Tk2k0

~0! ~t !#(
a

qa
2

ma
E

R
dv

kvha8 ~v !

p21k2v2 . ~E7!

SinceFa andha are even, this becomes

T̃k
~0!~p!F11

4p

k (
a

qa
2

ma
E

R
dv

Fa8 ~v !

kv2 ipG1
e0

2

4p

k
3(

a

qa
2

ma
@ T̃k1k0

~0! ~p!1T̃k2k0

~0! ~p!#E
R
dv

ha8 ~v !

kv2 ip

52dk,k0
e0

4p i

k (
a

qaE
R
dv

ha~v !

kv2 ip
~E8!

and Eq.~33! follows.
it.
ly

fi-

ith
2. The threshold equation

Next we derive the threshold equation, Eq.~39!, for a
small critical initial amplitude. IfT(0), Eq. ~38!, is substi-
tuted into Eq.~27!, this threshold equation becomes explic
From Eq.~38!, Tnk0

(0) 5O(e0
n), and we shall need to keep on

Tk0

(0,1) and T2k0

(0,2) , which generate, respectively, the coef

cientsS1,j
(0,1) andS2,j

(0,2) according to Eq.~D48! ~with errors of
ordere0

3). By symmetry,

S1,j
~0,1!5

1

2i F Nk0

1 ~2 i j v!

Dk0

1 ~2 i j v!
2

Nk0

1 ~ i j v!

Dk0

1 ~ i j v!G5ImF Nk0

1 ~2 i j v!

Dk0

1 ~2 i j v!G ,

~E9!
02640
S2,j
~0,2!5

1

2i F Nk0

1 ~2 i j v!C2k0

1 ~2 i j v!

Dk0

1 ~2 i j v!D2k0

1 ~2 i j v!
2

Nk0

1 ~ i j v!C2k0

1 ~ i j v!

Dk0

1 ~ i j v!D2k0

1 ~ i j v!G
5ImF Nk0

1 ~2 i j v!C2k0

1 ~2 i j v!

Dk0

1 ~2 i j v!D2k0

1 ~2 i j v!G , ~E10!

whereNk(p), Dk(p), and Ck(p) are defined in Eqs.~34!,
~35!, and ~36!, and the superscript ‘‘1’’ indicates analytic
continuation. These expressions, in conjunction w
Eqs. ~D55!, yield r1(T0)5e0s1S1,1

(0,1)24e0
2sas2S2,2

(0,2)

1O(e0
3) and r2(T0)524e0sas2S1,2

(0,1)1O(e0
2). Thus, to

leading order,
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G~e0 ,T0!5e0s1S1,1
~0,1!(

a
F uqau5

k0
3ma

3 G1/2dFa

dv
~vp!24e0

2H s2S2,2
~0,2!(

a
saF uqau5

k0
3ma

3 G1/2dFa

dv
~vp!

1
s2

2
S1,2

~0,1!(
a

saF uqau5

k0
3ma

3 G1/2dha

dv
~vp!J 1O~e0

3! ~E11!

and Eq.~27! becomes Eq.~39!.

3. Time-asymptotic field amplitude near the threshold

Finally, we present the details that lead from the general formula for the time-asymptotic amplitude, Eq.~32!, to the value
of a near the threshold, Eq.~56!. From Eq.~32!, to first order in botha andDe, a5mDe where

m52
k0(asa@ uqau3/ma#1/2ha~vp!

(a@ uqau5/ma
3 #1/2Fa9 ~vp!

2
(a@ uqa

5 u/k0
3ma

3 #1/2@ 1
2 e0

~1!r2~T~0,1!1T~1,0!!ha8 ~vp!1r1~T~1,0!!Fa8 ~vp!#

s1(a@ uqau5/k0
5ma

3 #1/2Fa9 ~vp!

1
x2x3e0

~1!1x2(a@ uqau5/k0
5ma

3 #1/2$~s1/2vp!Fa8 ~vp!2e0
~1!~ uqau/ma!@2r3~T~0,1!!Fa-~vp!2~1/4vp!l2~T~0,1!!Fa9 ~vp!#%

@s1(a@ uqa
5 u/k0

5ma
3 #1/2Fa9 ~vp!#2 .

~E12!
-

m

r is

at
From the definitions ofr i and l i , Eqs. ~D55! and ~D57!,
simple integrations lead to

r1~T~1,0!!5s1S1,1
~1,0! ,

r2~T~1,0!1T~0,1!!524s2sa~S1,2
~1,0!1S1,2

~0,1!!,

r3~T~0,1!!5
1

2
s2S1,1

~0,1! , l2~T~0,1!!5s1S1,3
~0,1! , ~E13!

wheres i , i 51,2, are given below Eq.~D38!, S1,j
(1,0) are zero

for j Þ1 since the only nonzero Fourier component inT(1,0)

corresponds tok5k0 , S1,1
(1,0) is obtained by insertingTk0

(1,0)

into Eq. ~D48!, and theS1,j
(0,1) , j 51,2,..., were already ob

tained in Eq.~E9!. Here, however,Nk0

1 /Dk0

1 in Eq. ~E9! is

replaced by the modified function@Nk0

1 (p)/Dk0

1 (p)#

2Ãk0

(0)(p). This has a significant effect, becauseNk0

1 /Dk0

1 has
02640
a singularity atp56 ik0vp , ase0
(1)→0, which causesS1,1

(0,1)

to be of order 1/e0
(1) . This can be seen from Eq.~E9! for j

51, since atv56k0vp the denominator reduces to a ter
proportional to(a(qa

2/ma)Fa8 (vp)5O(e0
(1)). Thus, the sec-

ond term in the numerator of Eq.~40! is non-negligible at
leading order, whereas the first term in the denominato
negligible at leading order due to Eq.~54! @because there is
no singularity atp562ik0vp andS2,2

(0,2)5O(1)]. However,
the coefficientS1,1

(1,0) in Eqs. ~E13! and therefore~E12! is
O(1) @and the term that contains it isO(e0

(1)) due to Eq.
~54!#, because the singularities in@Nk0

1 (p)/Dk0

1 (p)#

2Ãk0

(0)(p) at p56 ik0vp are removable, due to Eq.~50!.

Indeed, Taylor expandingNk0

1 andDk0

1 in this modified func-

tion about6 ik0vp shows that the singular terms cancel,
leading order ine0

(1) . Taking the limitdz→0 in that expan-
sion and exploiting the symmetries yields
S1,1
~1,0!5

a0

2k0vp
2ImF i (aqa@P*Rdv ha8 ~v !/~v2vp!1 ipha8 ~vp!#

(a~qa
2/ma!@P*Rdv Fa9 ~v !/~v2vp!1 ipFa9 ~vp!#

G , ~E14!
oth
e

wherea0 was given in Eq.~49!. According to Eq.~E13!, Eq.
~E12! then becomes Eq.~56!.

Equation~56! is accurate to ordere0
(1)De, even though we

did not calculate the terms of orderO(e0
(1)De) in the solu-

tion for the transient field, Eq.~55!. This follows from Eq.
~54!; in principle, the solution fora, Eq.~32!, contains a term
of the form e0

(1)De(a@ uqa
5 u/k0

3ma
3 #1/2 r1(T(1,1))Fa8 (vp), but
this term is ‘‘pushed’’ to orderO(e0
(1)2De) by Eq. ~54!. In

cases in which only Eq. ~53! is satisfied ~and
(a@ uqa

5 u/k0
3ma

3 #1/2 Fa8 (vp)Þ0), one must add to Eq.~56! the
contribution due toT(1,1), by carrying out the perturbation
analysis of the transient equation through first order in b
De ande0

(1) . This calculation, which is quite tedious, will b
omitted here.
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C. LANCELLOTTI AND J. J. DORNING PHYSICAL REVIEW E68, 026406 ~2003!
APPENDIX F: BUCHANAN-DORNING SOLUTIONS

In this appendix we verify that the two-wave BGK-lik
solutions discovered by Buchanan and Dorning@15# satisfy
the nonlinear condition Eq.~50!, and thus are a special cas
of the solutions developed in this paper. Att50 the distri-
bution function corresponding to the approximate invaria
Ea

(6) @see Eq.~15!# is

GaS ma

2
~v7vp!21e

qa

k0
cosk0x1e

qa

k0

v7vp

v6vp
cosk0xD

5GaS ma

2
~v7vp!21e

qa

k0

2v
v6vp

cosk0xD
5GaS ma

2
~v7vp!2D1e

qa

k0

2v
v6vp

3Ga8 S ma

2
~v7vp!2D cosk0x1O~e2!, ~F1!

whereGa must satisfy certain criteria@15# which in fact en-
sure that Eqs.~45! and ~46! are satisfied. Clearly, the initia
condition in Eq.~F1! is of the formFa(v)1eha(v)cosk0x
~at leading order ine! with Fa(v)5Ga@(ma/2)(v7vp)2#
and ha(v)5(qa /k0)@2v/(v6vp)#Ga8 @(ma/2)(v7vp)2#.
DifferentiatingFa yields

Fa8 ~v !5ma~v7vp!Ga8 S ma

2
~v7vp!2D

5
k0ma

qa

~v6vp!~v7vp!

2v
ha~v !, ~F2!

so that
ev

02640
s

k0ma

qa
ha~v !5

2v

v22vp
2 Fa8 ~v !5

Fa8 ~v !

v1vp
1

Fa8 ~v !

v2vp
. ~F3!

Dividing by v7vp and taking the principal value integra
gives

k0ma

qa
PE ha~v !

v7vp
dv

5PE Fa8 ~v !

~v7vp!2 dv1PE Fa8 ~v !

~v1vp!~v2vp!
dv

5PE Fa9 ~v !

v7vp
dv, ~F4!

where the first term was integrated by parts, the secon
zero because the integrand is odd, and

Fa9 ~v !5ma
2~v7vp!2Ga9 S ma

2
~v7vp!2D

1maGa8 S ma

2
~v7vp!2D , ~F5!

which atv56vp gives

Fa9 ~6vp!5maGa8 ~0!5
k0ma

qa
ha~6vp!. ~F6!

From Eqs.~F4! and~F6! it follows that Eq.~50! is satisfied.
Then, substituting Eq.~F6! into Eq. ~49! gives a051, i.e.,
a5e, which is what we should expect since we know th
these undamped ‘‘BGK-like’’ waves travel without changin
amplitude.
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